## FANDOM

10,101 Pages

The corporal is equal to {10,100,1,2} = 10{{1}}100 (10 expanded to 100) in BEAF.[1] It surpasses Graham's number, and is currently the smallest Bowersism that does so. The term was coined by Jonathan Bowers.

Bowers jokingly says about this number, "lets just put it this way, you DON'T want the Corporal coming up to you asking for a corporal push ups".[2]

It is equal to 10[1,1]100 in Username5243's Array Notation, and Username5243 calls this number a Kil-Googol (formerly Meg-Googol).[3]

## Computation Edit

Corporal can be computed in the following process:

• $$a_1 = 10$$
• $$a_2 = 10 \uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow 10$$ (this is tridecal).
• $$a_3 = 10 \uparrow\uparrow\uparrow\uparrow\cdots\uparrow\uparrow\uparrow\uparrow 10$$ with $$a_2$$ $$\uparrow$$'s.
• $$a_4 = 10 \uparrow\uparrow\uparrow\uparrow\cdots\uparrow\uparrow\uparrow\uparrow 10$$ with $$a_3$$ $$\uparrow$$'s.
• etc.
• Corporal is equal to $$a_{100}$$.

## Approximations Edit

Notation Approximation
Bird's array notation $$\{10,100,1,2\}$$ (exact)
Hyper-E notation $$E10\#\#10\#100$$
Chained arrow notation $$10 \rightarrow 10 \rightarrow 100 \rightarrow 2$$
Notation Array Notation $$(10,10,100\{3,3\}2)$$
Hyperfactorial array notation $$100![2]$$
X-Sequence Hyper-Exponential Notation $$10\{X+1\}100$$ (exact)
Strong array notation $$s(10,100,2,2)$$
Fast-growing hierarchy $$f_{\omega+1}(99)$$
Hardy hierarchy $$H_{\omega^{\omega+1}}(99)$$
Slow-growing hierarchy $$g_{\Gamma_0}(99)$$

## Sources Edit

1. Bowers, JonathanInfinity Scrapers. Retrieved January 2013.
2. Size 4 Arrays
3. Username5243. shortened list - My Large Numbers. Retrieved March 2017.