FANDOM


The corporalplex is equal to {10,corporal,1,2} = 10{10{⋯{10}⋯}10}10, where there are corporal 10's from the center out in BEAF.[1]

Corporalplex can be computed in the following process, as similar as a corporal:

  • \(a_1 = 10\)
  • \(a_2 = 10 \uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow 10 \) (this is tridecal)
  • \(a_3 = 10 \uparrow\uparrow\uparrow\uparrow\cdots\uparrow\uparrow\uparrow\uparrow 10 \) with \(a_2\) \(\uparrow\)'s.
  • \(a_4 = 10 \uparrow\uparrow\uparrow\uparrow\cdots\uparrow\uparrow\uparrow\uparrow 10 \) with \(a_3\) \(\uparrow\)'s.
  • etc.
  • Corporalplex is equal to \(a_{a_{100}}\) or \(a_{\text{corporal}}\).
Corporalplex

Visual representation of a corporalplex in up-arrow notation

Approximations

Notation Approximation
Bird's array notation \(\{10,\{10,100,1,2\},1,2\}\) (exact)
Hyper-E notation \(E10\#\#10\#100\#2\)
Chained arrow notation \(10 \rightarrow 10 \rightarrow \text{corporal} \rightarrow 2\)
X-Sequence Hyper-Exponential Notation \(10\{X+1\}10\{X+1\}100\) (exact)
Fast-growing hierarchy \(f_{\omega +1}(f_{\omega +1}(99))\)
Hardy hierarchy \(H_{(\omega^{\omega+1})2 }(99)\)
Slow-growing hierarchy \(g_{\Gamma_{\Gamma_0} }(10)\)

Sources

  1. Bowers, JonathanInfinity Scrapers. Retrieved January 2013.