FANDOM

10,264 Pages

Not to be confused with duocentillion.

The ducentillion or dihectillion[1] is equal to 10603 in short scale and 101,200 in long scale.[2] The name is equal with Conway-Wechsler System,[3] but it seems to be developed independently.

Landon Curt Noll coined the name duocentillion for this number (not to be confused with Bowers' duocentillion, which equals 10309).[4][5]

Aarex Tiaokhiao gave the name bicemillion, referring to the value of this number.[6]

ApproximationsEdit

For short scale:

Notation Lower bound Upper bound
Scientific notation $$1\times10^{603}$$
Arrow notation $$10\uparrow603$$
Steinhaus-Moser Notation 251[3] 252[3]
Copy notation 9[603] 10[302]
Taro's multivariable Ackermann function A(3,2000) A(3,2001)
Pound-Star Notation #*((147))*15 #*((148))*15
BEAF {10,603}
Hyper-E notation E603
Bashicu matrix system (0)(1)[8] (0)(1)[9]
Hyperfactorial array notation 295! 296!
Fast-growing hierarchy $$f_2(1992)$$ $$f_2(1993)$$
Hardy hierarchy $$H_{\omega^2}(1992)$$ $$H_{\omega^2}(1993)$$
Slow-growing hierarchy $$g_{\omega^{\omega^26+3}}(10)$$

For long scale:

Notation Lower bound Upper bound
Scientific notation $$1\times10^{1200}$$
Arrow notation $$10\uparrow1200$$
Steinhaus-Moser Notation 451[3] 452[3]
Copy notation 9[1200] 1[1201]
Taro's multivariable Ackermann function A(3,3983) A(3,3984)
Pound-Star Notation #*((1182))*20 #*((1183))*20
BEAF {10,1200}
Hyper-E notation E1200
Bashicu matrix system (0)(1)[9] (0)(1)[10]
Hyperfactorial array notation 524! 525!
Fast-growing hierarchy $$f_2(3974)$$ $$f_2(3975)$$
Hardy hierarchy $$H_{\omega^2}(3974)$$ $$H_{\omega^2}(3975)$$
Slow-growing hierarchy $$g_{\omega^{\omega^3+\omega^22}}(10)$$