## FANDOM

10,265 Pages

A duoquadragintillion is equal to $$10^{129}$$ or $$10^{252}$$ in France and Germany.[1]

In the long scale which is commonly used in France and Germany, $$10^{129}$$ is called unvigintilliard.

## Approximations Edit

For short scale:

Notation Lower bound Upper bound
Scientific notation $$1\times10^{129}$$
Arrow notation $$10\uparrow129$$
Steinhaus-Moser Notation 69[3] 70[3]
Copy notation 9[129] 10[65]
Taro's multivariable Ackermann function A(3,425) A(3,426)
Pound-Star Notation #*(3,10,8,1,5,9,8,2)*9 #*(4,10,8,1,5,9,8,2)*9
BEAF {10,129}
Hyper-E notation E129
Bashicu matrix system (0)(0)(0)(0)(0)[10746] (0)(0)(0)(0)(0)[10747]
Hyperfactorial array notation 85! 86!
Fast-growing hierarchy $$f_2(419)$$ $$f_2(420)$$
Hardy hierarchy $$H_{\omega^2}(419)$$ $$H_{\omega^2}(420)$$
Slow-growing hierarchy $$g_{\omega^{\omega^2+\omega2+9}}(10)$$

For long scale:

Notation Lower bound Upper bound
Scientific notation $$1\times10^{252}$$
Arrow notation $$10\uparrow252$$
Steinhaus-Moser Notation 120[3] 121[3]
Copy notation 9[252] 1[253]
Taro's multivariable Ackermann function A(3,834) A(3,835)
Pound-Star Notation #*((801))*10 #*((802))*10
BEAF {10,252}
Hyper-E notation E252
Bashicu matrix system (0)(0)(0)(0)(0)(0)[8659] (0)(0)(0)(0)(0)(0)[8660]
Hyperfactorial array notation 145! 146!
Fast-growing hierarchy $$f_2(827)$$ $$f_2(828)$$
Hardy hierarchy $$H_{\omega^2}(827)$$ $$H_{\omega^2}(828)$$
Slow-growing hierarchy $$g_{\omega^{\omega^22+\omega5+2}}(10)$$

## List of prefixed numbers derived from quadragintillionEdit

Name Short scale Long scale