FANDOM


The grangol regiment is a series of numbers from E100#100 to E1#1#100#3 defined using Hyper-E Notation (i.e. beginning from grangol and up to hectataxiataxia-taxis).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Guppy regiment Greagol regiment

List of numbers of the regiment Edit

Name of number Hyper-E Notation (exact equality) Scientific notation or Arrow notation (exact equality) Slow-growing hierarchy
grangolbit E[2]100#100 \(\underbrace{2^{...^{2^{100}}}}_{100\quad 2's}\) \(g_{\varepsilon_\omega}(10)\)
grangolbyte E[8]100#100 \(\underbrace{8^{...^{8^{100}}}}_{100\quad 8's}\) \(g_{\varepsilon_\omega}(10)\)
grangol E100#100 \(\underbrace{10^{...^{10^{100}}}}_{100\quad 10's}\) \(g_{\varepsilon_\omega}(10)\)
grangolplex E(E100#100) = E100#101 \(\underbrace{10^{...^{10^{100}}}}_{101\quad 10's}\) \(g_{\varepsilon_\omega^{\varepsilon_\omega}}(10)\)
giggolchime E1#1000 \(10\uparrow^2 10^{3}\) \(g_{\varepsilon_{\omega^2}}(10)\)
grangolchime E1000#1000 \(\underbrace{10^{...^{10^{1000}}}}_{1000\quad 10's}\) \(g_{\varepsilon_{\omega^2}}(10)\)
giggoltoll E1#10,000 \(10\uparrow^2 10^{4}\) \(g_{\varepsilon_{\omega^3}}(10)\)
grangoltoll E10,000#10,000 \(\underbrace{10^{...^{10^{10^4}}}}_{10^4+1\quad 10's}\) \(g_{\varepsilon_{\omega^3}}(10)\)
giggolgong E1#100,000 \(10\uparrow^2 10^{5}\) \(g_{\varepsilon_{\omega^4}}(10)\)
grangolgong E100,000#100,000 \(\underbrace{10^{...^{10^{10^5}}}}_{10^5+1\quad 10's}\) \(g_{\varepsilon_{\omega^4}}(10)\)
giggolbong E1#100,000,000 \(10\uparrow^2 10^{8}\) \(g_{\varepsilon_{\omega^7}}(10)\)
grangolbong E100,000,000#100,000,000 \(\underbrace{10^{...^{10^{10^8}}}}_{10^8+1\quad 10's}\) \(g_{\varepsilon_{\omega^7}}(10)\)
dialogialogue E1#(10^10) \(10\uparrow^2 10^{10}\) \(g_{\varepsilon_{\omega^\omega}}(10)\)
giggolthrong E1#100,000,000,000 \(10\uparrow^2 10^{11}\) \(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
grangolthrong E100,000,000,000#100,000,000,000 \(\underbrace{10^{...^{10^{10^{11}}}}}_{10^{11}+1\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
guppylogue E1#(10^20) \(10\uparrow^2 10^{20}\) \(g_{\varepsilon_{\omega^{\omega\times2}}}(10)\)
minnowlogue E1#(10^25) \(10\uparrow^2 10^{25}\) \(g_{\varepsilon_{\omega^{\omega\times2+5}}}(10)\)
gobylogue E1#(10^35) \(10\uparrow^2 10^{35}\) \(g_{\varepsilon_{\omega^{\omega\times3+5}}}(10)\)
gogologue E1#(10^50) \(10\uparrow^2 10^{50}\) \(g_{\varepsilon_{\omega^{\omega\times5}}}(10)\)
ogologue E1#(10^80) \(10\uparrow^2 10^{80}\) \(g_{\varepsilon_{\omega^{\omega\times8}}}(10)\)
googologue E1#(10^100) \(10\uparrow^2 10^{100}\) \(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
googoldex E100#1#2 = E100#(E100) = E100#googol \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
googoldexiplex E(E100#1#2) = E(E100#(E100)) = E(E100#googol) = E100#(googol+1) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+1\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2}+1}}(10)\)
googoldexiduplex E(E100#1#2)#2 = E(E100#googol)#2 = E100#(googol+2) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+2\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2}+2}}(10)\)
ecetondex E303#1#2 = E303#(E303) \(\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2\times3+3}}}(10)\)
trialogialogue E1#(10^10^10) \(10\uparrow^2 10\uparrow^2 3\) \(g_{\varepsilon_{\omega^{\omega^{\omega}}}}(10)\)
googolplexilogue E1#(10^10^100) \(10\uparrow^2 10^{10^{100}}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
googolplexidex E100#2#2 = E100#(E100#2) = E100#googolplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
googolplexidexiplex E100#(1+E100#2) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+1\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+1}}(10)\)
googolplexidexiduplex E100#(2+E100#2) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+2\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+2}}(10)\)
tetralogialogue E1#(10^10^10^10) \(10\uparrow^2 10\uparrow^2 4\) \(g_{\varepsilon_{\omega^{\omega^{\omega^\omega}}}}(10)\)
googolduplexilogue E1#(10^10^10^100) \(10\uparrow^2 10^{10^{10^{100}}}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
googolduplexidex E100#3#2 = E100#(E100#3) = E100#googolduplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
pentalogialogue E1#(10^10^10^10^10) \(10\uparrow^2 10\uparrow^2 5\) \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
googoltriplexilogue E1#(10^10^10^10^100) \(10\uparrow^2 10^{10^{10^{10^{100}}}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
googoltriplexidex E100#4#2 = E100#(E100#4) = E100#googoltriplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
hexalogialogue E1#(E1#6) = E1#6#2 \(10\uparrow^2 10\uparrow^2 6\) \(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
googolquadriplexidex E100#5#2 = E100#(E100#5) = E100#googolquadriplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
heptalogialogue E1#7#2 \(10\uparrow^2 10\uparrow^2 7\) \(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
googolquintiplexidex E100#6#2 = E100#(E100#6) = E100#googolquintiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
octalogialogue E1#8#2 \(10\uparrow^2 10\uparrow^2 8\) \(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
googolsextiplexidex E100#7#2 = E100#(E100#7) = E100#googolsextiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
ennalogialogue E1#9#2 = 10^^10^^9 \(10\uparrow^2 10\uparrow^2 9\) \(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
googolseptiplexidex E100#8#2 = E100#(E100#8) = E100#googolseptiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
dekalogialogue, tria-taxis E1#10#2 \(10\uparrow^2 10\uparrow^2 10\) \(g_{\varepsilon_{\varepsilon_0}}(10)\)
googoloctiplexidex E100#9#2 = E100#(E100#9) = E100#googoloctiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_0}}(10)\)
googolnoniplexidex E100#10#2 = E100#(E100#10) = E100#googolnoniplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_1}}(10)\)
googoldeciplexidex E100#11#2 = E100#(E100#11) = E100#googoldeciplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_2}}(10)\)
hectalogialogue E1#100#2 \(10\uparrow^2 10\uparrow^2 100\) \(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
grangoldex E100#100#2 = E100#(E100#100) = E100#grangol \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
chilialogialogue E1#1000#2 \(10\uparrow^2 10\uparrow^2 1000\) \(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
grangoldexichime E1000#1000#2 \(\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
myrialogialogue E1#10,000#2 \(10\uparrow^2 10\uparrow^2 10000\) \(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
grangoldexitoll E10,000#10,000#2 \(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
grangoldexigong E100,000#100,000#2 = E100,000#grangolgong \(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^4}}}(10)\)
octadialogialogue E1#100,000,000#2 = 10^^10^^100,000,000 \(10\uparrow^2 10\uparrow^2 10^8\) \(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
grangoldexibong E100,000,000#100,000,000#2 \(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
grangoldexithrong E100,000,000,000#100,000,000,000#2 \(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}(10)\)
sedeniadialogialogue E1#(10^16)#2 \(10\uparrow^2 10\uparrow^2 10^{16}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}(10)\)
googoldudex E100#1#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}(10)\)
ecetondudex E303#1#3 = E303#ecetondex \(\underbrace{10^{...^{10^{10^{303}}}}}_{\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3+3}}}}(10)\)
trialogialogialogue E1#3#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 3\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega}}}}}(10)\)
googolplexidudex E100#2#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}(10)\)
tetralogialogialogue E1#4#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 4\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
googolduplexidudex E100#3#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
pentalogialogialogue E1#5#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 5\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
googoltriplexidudex E100#4#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
hexalogialogialogue E1#6#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 6\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
googolquadriplexidudex E100#5#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
heptalogialogialogue E1#7#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 7\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
googolquintiplexidudex E100#6#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
octalogialogialogue E1#8#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 8\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
googolsextiplexidudex E100#7#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
ennalogialogialogue E1#9#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 9\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
googolseptiplexidudex E100#8#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
dekalogialogialogue, tetra-taxis E1#10#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
googoloctiplexidudex E100#9#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
googolnoniplexidudex E100#10#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_1}}}(10)\)
googoldeciplexidudex E100#11#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_2}}}(10)\)
hectalogialogialogue E1#100#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 100\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
grangoldudex E100#100#3 = E100#(E100#100#2) = E100#grangoldex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
chilialogialogialogue E1#1000#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 1000\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
grangoldudexichime E1000#1000#3 \(\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
myrialogialogialogue E1#10,000#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10000\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
grangoldudexitoll E10,000#10,000#3 \(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
grangoldudexigong E100,000#100,000#3 = E100,000#grangoldexigong \(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^4}}}}(10)\)
octadialogialogialogue E1#100,000,000#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^8\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
grangoldudexibong E100,000,000#100,000,000#3 \(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
grangoldudexithrong E100,000,000,000#100,000,000,000#3 \(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}}(10)\)
sedeniadialogialogialogue E1#(10^16)#3 = 10^^10^^10^^10^16 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^{16}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}}(10)\)
googoltridex E100#1#4 \(10\uparrow^3 4\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}}(10)\)
ecetontridex E303#1#4 = E303#ecetondudex 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{4 layers}
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3}}}}}(10)\)
googolplexitridex E100#2#4 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{4 layers}
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}}(10)\)
googolduplexitridex E100#3#4 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{4 layers}
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}}}(10)\)
penta-taxis E1#1#5 = E1#(E1#(E1#(E1#10))) = E1#tetra-taxis 10\uparrow^3 5 \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}}(10)\)
grangoltridex E100#100#4 = E100#(E100#100#3) = E100#grangoldudex 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{5 layers}
grangoltridexichime E1000#1000#4 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{5 layers}
grangoltridexitoll E10,000#10,000#4 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{5 layers}
grangoltridexigong E100,000#100,000#4 = E100,000#grangoldudexigong 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{5 layers}
googolquadridex E100#1#5 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{5 layers}
ecetonquadridex E303#1#5 = E303#ecetontridex 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{5 layers}
googolplexiquadridex E100#2#5 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{5 layers}
googolduplexiquadridex E100#3#5 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{5 layers}
hexa-taxis E1#1#6 = E1#(E1#(E1#(E1#(E1#10)))) = E1#penta-taxis 10\uparrow^3 6
grangolquadridex E100#100#5 = E100#(E100#100#4) = E100#grangoltridex 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{6 layers}
grangolquadridexichime E1000#1000#5 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{6 layers}
grangolquadridexitoll E10,000#10,000#5 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{6 layers}
grangolquadridexigong E100,000#100,000#5 = E100,000#grangoltridexigong 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{6 layers}
googolquintidex E100#1#6 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{6 layers}
ecetonquintidex E303#1#6 = E303#ecetonquadridex 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{6 layers}
googolplexiquintidex E100#2#6 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{6 layers}
googolduplexiquintidex E100#3#6 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{6 layers}
hepta-taxis E1#1#7 = E1#hexa-taxis 10\uparrow^3 7
grangolquintidex E100#100#6 = E100#(E100#100#5) = E100#grangolquadridex 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{7 layers}
grangolquintidexichime E1000#1000#6 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{7 layers}
grangolquintidexitoll E10,000#10,000#6 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{7 layers}
grangolquintidexigong E100,000#100,000#6 = E100,000#grangolquadridexigong 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{7 layers}
googolsextidex E100#1#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{7 layers}
ecetonsextidex E303#1#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{7 layers}
googolplexisextidex E100#2#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{7 layers}
googolduplexisextidex E100#3#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{7 layers}
octa-taxis E1#1#8 = E1#hepta-taxis 10\uparrow^3 8
grangolsextidex E100#100#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{8 layers}
grangolsextidexichime E1000#1000#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{8 layers}
grangolsextidexitoll E10,000#10,000#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{8 layers}
grangolsextidexigong E100,000#100,000#7 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{8 layers}
googolseptidex E100#1#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{8 layers}
ecetonseptidex E303#1#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{8 layers}
googolplexiseptidex E100#2#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{8 layers}
googolduplexiseptidex E100#3#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{8 layers}
enna-taxis E1#1#9 = E1#octa-taxis 10\uparrow^3 9
grangolseptidex E100#100#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{9 layers}
grangolseptidexichime E1000#1000#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{9 layers}
grangolseptidexitoll E10,000#10,000#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{9 layers}
grangolseptidexigong E100,000#100,000#8 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{9 layers}
googoloctidex E100#1#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{9 layers}
ecetonoctidex E303#1#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{9 layers}
googolplexioctidex E100#2#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{9 layers}
googolduplexioctidex E100#3#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{9 layers}
deka-taxis E1#1#10 = E1#enna-taxis 10\uparrow^3 10
grangoloctidex E100#100#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{10 layers}
grangoloctidexichime E1000#1000#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{10 layers}
grangoloctidexitoll E10,000#10,000#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{10 layers}
grangoloctidexigong E100,000#100,000#9 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{10 layers}
googolnonidex E100#1#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{10 layers}
ecetonnonidex E303#1#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{10 layers}
googolplexinonidex E100#2#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{10 layers}
googolduplexinonidex E100#3#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{10 layers}
grangolnonidex E100#100#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{11 layers}
grangolnonidexichime E1000#1000#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{11 layers}
grangolnonidexitoll E10,000#10,000#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{11 layers}
grangolnonidexigong E100,000#100,000#10 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{11 layers}
googoldecidex E100#1#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{100}\quad 10's
\end{matrix}
\right \} \text{11 layers}
ecetondecidex E303#1#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{303}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{303}}}} \\
10^{303}\quad 10's
\end{matrix}
\right \} \text{11 layers}
googolplexidecidex E100#2#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{100}}\quad 10's
\end{matrix}
\right \} \text{11 layers}
googolduplexidecidex E100#3#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
10^{10^{10^{100}}}\quad 10's
\end{matrix}
\right \} \text{11 layers}
grangoldecidex E100#100#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100}}}} \\
100\quad 10's
\end{matrix}
\right \} \text{12 layers}
grangoldecidexichime E1000#1000#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{1000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{1000}}}} \\
1000\quad 10's
\end{matrix}
\right \} \text{12 layers}
grangoldecidexitoll E10,000#10,000#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{10000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{10000}}}} \\
10000\quad 10's
\end{matrix}
\right \} \text{12 layers}
grangoldecidexigong E100,000#100,000#11 
\left.
\begin{matrix}
\underbrace{10^{...^{10^{100000}}}} \\
\underbrace{\quad\;\; \vdots \quad\;\;} \\
\underbrace{10^{...^{10^{100000}}}} \\
100000\quad 10's
\end{matrix}
\right \} \text{12 layers}
hecta-taxis E1#1#100 \(10\uparrow^3 100\)
chilia-taxis E1#1#1000 \(10\uparrow^3 1000\)
myria-taxis E1#1#10,000 \(10\uparrow^3 10000\)
chilia-chilia-taxis E1#1#1,000,000 \(10\uparrow^3 1000000\)
chilia-myria-taxis E1#1#10,000,000 \(10\uparrow^3 10000000\)
myria-myria-taxis E1#1#100,000,000 \(10\uparrow^3 100000000\)
sedeniadia-taxis E1#1#(10^16) \(10\uparrow^3 10^{16}\)
googolia-taxis E1#1#(10^100) \(10\uparrow^3 10^{100}\)
trialogia-taxis E1#1#(10^10^10) \(10\uparrow^3 10^{10^{10}}\)
googolplexia-taxis E1#1#(10^10^100) \(10\uparrow^3 10^{10^{100}}\)
tetralogia-taxis E1#1#(10^10^10^10) \(10\uparrow^3 10^{10^{10^{10}}}\)
googolduplexia-taxis E1#1#(10^10^10^100) \(10\uparrow^3 10^{10^{10^{100}}}\)
pentalogia-taxis E1#1#(10^10^10^10^10) \(10\uparrow^3 10^{10^{10^{10^{10}}}}\)
googoltriplexia-taxis E1#1#(10^10^10^10^100) \(10\uparrow^3 10^{10^{10^{10^{100}}}}\)
hexalogia-taxis E1#1#(E1#6) = 10^^^10^^6 \(10\uparrow^3 10\uparrow^2 6\)
heptalogia-taxis E1#1#(E1#7) = 10^^^10^^7 \(10\uparrow^3 10\uparrow^2 7\)
octalogia-taxis E1#1#(E1#8) = 10^^^10^^8 \(10\uparrow^3 10\uparrow^2 8\)
ennalogia-taxis E1#1#(E1#9) = 10^^^10^^9 \(10\uparrow^3 10\uparrow^2 9\)
dekalogia-taxis E1#1#(E1#10) = 10^^^10^^10 = 10^^^10^^^2 \(10\uparrow^3 10\uparrow^3 2\)
triataxia-taxis E1#1#(E1#1#3) = E1#1#3#2 = 10^^^10^^^3 \(10\uparrow^3 10\uparrow^3 3\)
dekataxia-taxis E1#1#10#2 = E1#1#1#3 = 10^^^10^^^10 \(10\uparrow^3 10\uparrow^3 10\)
hectataxia-taxis E1#1#100#2 = 10^^^10^^^100 \(10\uparrow^3 10\uparrow^3 100\)
triataxiataxia-taxis E1#1#3#3 = 10^^^10^^^10^^^3 \(10\uparrow^3 10\uparrow^3 10\uparrow^3 3\)
dekataxiataxia-taxis E1#1#10#3 = E1#1#1#4 = 10^^^10^^^10^^^10 \(10\uparrow^3 10\uparrow^3 10\uparrow^3 10\)
hectataxiataxia-taxis E1#1#100#3 = 10^^^10^^^10^^^100 \(10\uparrow^3 10\uparrow^3 10\uparrow^3 100\)

Etymology Edit

Parts of names Meaning
tria 3
tetra 4
penta 5
hexa 6
hepta 7
octa 8
enna 9
deka 10
hecta 100
chilia 1000
myria 10000
ding multiply the base value by 5
chime multiply the base value by 10
bell multiply the base value by 50
toll multiply the base value by 100
gong multiply the base value by 1000
bong multiply the base value by \(10^6\)
throng multiply the base value by \(10^9\)
gandingan multiply the base value by \(10^{12}\)

Sources Edit

  1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.