FANDOM


The gigangol regiment is a series of numbers from E100#100#100#100 to E1#1#1#1#10,000 defined using Hyper-E Notation (i.e. beginning from gigangol and up to myria-exaxis).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Greagol regiment Gorgegol regiment

List of numbers of the regiment Edit

Name of number Hyper-E Notation (exact equality) Arrow notation (approximation)
gigangol E100#100#100#100 \(10\uparrow^4 100\)
greagoltetrex E100#100#100#1#2 \(10\uparrow^4 (10\uparrow^3 100)\)
greagolthrexitetrex E100#100#100#2#2 \(10\uparrow^4 (10\uparrow^3 (10\uparrow^3 100))\)
greagolduthrexitetrex E100#100#100#3#2 \(10\uparrow^4 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 100)))\)
gigangoltetrex E100#100#100#100#2 = E100#100#100#gigangol \(10\uparrow^4 (10\uparrow^4 100)\)
greagoldutetrex E100#100#100#1#3 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^3 100))\)
greagolthrexidutetrex E100#100#100#2#3 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 100)))\)
greagolduthrexidutetrex E100#100#100#3#3 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 100))))\)
gigangoldutetrex E100#100#100#100#3 = E100#100#100#gigangoltetrex \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100))\)
greagoltritetrex E100#100#100#1#4 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 100)))\)
greagolthrexitritetrex E100#100#100#2#4 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 100))))\)
greagolduthrexitritetrex E100#100#100#3#4 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 100)))))\)
gigangoltritetrex E100#100#100#100#4 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100)))\)
greagolquadritetrex E100#100#100#1#5 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 100))))\)
greagolthrexiquadritetrex E100#100#100#2#5 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 100)))))\)
greagolduthrexiquadritetrex E100#100#100#3#5 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 100))))))\)
gigangolquadritetrex E100#100#100#100#5 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100))))\)
greagolquintitetrex E100#100#100#1#6 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 100)))))\)
greagolthrexiquintitetrex E100#100#100#2#6 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 100))))))\)
greagolduthrexiquintitetrex E100#100#100#3#6 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 100)))))))\)
gigangolquintitetrex E100#100#100#100#6 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100)))))\)
gigangolchime E1000#1000#1000#1000 \(10\uparrow^4 1000\)
gigangoltetrexichime E1000#1000#1000#1000#2 \(10\uparrow^4 (10\uparrow^4 1000)\)
gigangoldutetrexichime E1000#1000#1000#1000#3 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 1000))\)
gigangoltoll E10,000#10,000#10,000#10,000 \(10\uparrow^4 10000\)
gigangoltetrexitoll E10,000#10,000#10,000#10,000#2 \(10\uparrow^4 (10\uparrow^4 10000)\)
gigangoldutetrexitoll E10,000#10,000#10,000#10,000#3 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10000))\)
gigangolgong E100,000#100,000#100,000#100,000 \(10\uparrow^4 10^5\)
gigangoltetrexigong E100,000#100,000#100,000#100,000#2 \(10\uparrow^4 (10\uparrow^4 10^5)\)
gigangoldutetrexigong E100,000#100,000#100,000#100,000#3 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10^5))\)
gigangolbong E100,000,000#100,000,000#

100,000,000#100,000,000

\(10\uparrow^4 10^8\)
gigangoltetrexibong E100,000,000#100,000,000#

100,000,000#100,000,000#2

\(10\uparrow^4 (10\uparrow^4 10^8)\)
gigangoldutetrexibong E100,000,000#100,000,000#

100,000,000#100,000,000#3

\(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10^8))\)
gigangolthrong E100,000,000,000#100,000,000,000#

100,000,000,000#100,000,000,000

\(10\uparrow^4 10^{11}\)
gigangoltetrexithrong E100,000,000,000#100,000,000,000#

100,000,000,000#100,000,000,000#2

\(10\uparrow^4 (10\uparrow^4 10^{11})\)
gigangoldutetrexithrong E100,000,000,000#100,000,000,000#

100,000,000,000#100,000,000,000#3

\(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10^{11}))\)
geegolchime E1#1#1#1000 \(10\uparrow^4 1000\)
geegoltoll E1#1#1#10,000 \(10\uparrow^4 10000\)
geegolgong E1#1#1#100,000 \(10\uparrow^4 10^5\)
geegolbong E1#1#1#100,000,000 \(10\uparrow^4 10^8\)
geegolthrong E1#1#1#100,000,000,000 \(10\uparrow^4 10^{11}\)
googoltetrex E100#1#1#1#2 \(10\uparrow^4 10^{100}\)
googolplexitetrex E100#2#1#1#2 \(10\uparrow^4 10^{10^{100}}\)
grangoltetrex E100#100#1#1#2 \(10\uparrow^4 (10\uparrow^2 100)\)
grangoldexitetrex E100#100#2#1#2 \(10\uparrow^4 (10\uparrow^2 (10\uparrow^2 100))\)
gigangolplex E(E100#100#100#100) \(10\uparrow (10\uparrow^4 100)\)
gigangoldex E100#(E100#100#100#100) \(10\uparrow^2 (10\uparrow^4 100)\)
gigangolthrex E100#100#(E100#100#100#100) \(10\uparrow^3 (10\uparrow^4 100)\)
ecetontetrex E303#1#1#1#2 \(10\uparrow^4 10^{303}\)
ecetondutetrex E303#1#1#1#3 \(10\uparrow^4 (10\uparrow^4 10^{303})\)
ecetontritetrex E303#1#1#1#4 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10^{303}))\)
ecetonquadritetrex E303#1#1#1#5 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10^{303})))\)
ecetonquintitetrex E303#1#1#1#6 \(10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 10^{303}))))\)
tria-exaxis E1#1#1#1#3 \(10\uparrow^5 3\)
tetra-exaxis E1#1#1#1#4 \(10\uparrow^5 4\)
deka-exaxis E1#1#1#1#10 \(10\uparrow^5 10\)
hecta-exaxis E1#1#1#1#100 \(10\uparrow^5 100\)
chilia-exaxis E1#1#1#1#1000 \(10\uparrow^5 1000\)
myria-exaxis E1#1#1#1#10,000 \(10\uparrow^5 10000\)

Etymology Edit

Parts of names Meaning
tria 3
tetra 4
penta 5
hexa 6
hepta 7
octa 8
enna 9
deka 10
hecta 100
chilia 1000
myria 10000
ding multiply the base value by 5
chime multiply the base value by 10
bell multiply the base value by 50
toll multiply the base value by 100
gong multiply the base value by 1000
bong multiply the base value by \(10^6\)
throng multiply the base value by \(10^9\)
gandingan multiply the base value by \(10^{12}\)

Sources Edit

  1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.