FANDOM


The guppy regiment is a series of 504 numbers from up to tetrational growth rate defined using Hyper-E Notation.[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
None Grangol regiment

List of numbers in the regimentEdit

Name of number Hyper-E Notation (exact) Standard notation/Numerical value Fast-growing hierarchy Hardy hierarchy Slow-growing hierarchy
Googol-minutia-speck E(-110) 10-110 \({f_2(357)}^{-1}\) \({H_{\omega^2}(357)}^{-1}\) \({g_{\omega^{\omega^2+\omega}}(10)}^{-1}\)
Googol-minutia E(-100) 10-100 \({f_2(324)}^{-1}\) \({H_{\omega^2}(324)}^{-1}\) \({g_{\omega^{\omega^2}}(10)}^{-1}\)
Ogol-minutia E(-80) 10-80 \({f_2(258)}^{-1}\) \({H_{\omega^2}(258)}^{-1}\) \({g_{\omega^{\omega\times8}}(10)}^{-1}\)
Gogol-minutia E(-50) 10-50 \({f_2(159)}^{-1}\) \({H_{\omega^2}(159)}^{-1}\) \({g_{\omega^{\omega\times5}}(10)}^{-1}\)
Goby-minutia E(-35) 10-35 \({f_2(109)}^{-1}\) \({H_{\omega^2}(109)}^{-1}\) \({g_{\omega^{\omega\times3+5}}(10)}^{-1}\)
Minnow-minutia E(-25) 10-25 \({f_2(77)}^{-1}\) \({H_{\omega^2}(77)}^{-1}\) \({g_{\omega^{\omega\times2+5}}(10)}^{-1}\)
Guppy-minutia E(-20) 10-20 \({f_2(61)}^{-1}\) \({H_{\omega^2}(61)}^{-1}\) \({g_{\omega^{\omega\times2}}(10)}^{-1}\)
Eyelash mite-speck 2E(-6) 0.000002 \({f_2(15)}^{-1}\) \({H_{\omega^2}(15)}^{-1}\) \({g_{\omega^5\times5}(10)}^{-1}\)
Dust mite-speck 5E(-6) 0.000005 \({f_2(14)}^{-1}\) \({H_{\omega^2}(14)}^{-1}\) \({g_{\omega^5\times2}(10)}^{-1}\)
Cheese mite-speck 8E(-6) 0.000008 \({f_2(13)}^{-1}\) \({H_{\omega^2}(13)}^{-1}\) \({g_{\omega^5}(10)}^{-1}\)
Clover mite-speck 2E(-5) 0.00002 \({f_2(12)}^{-1}\) \({H_{\omega^2}(12)}^{-1}\) \({g_{\omega^4\times5}(10)}^{-1}\)
Eyelash mite-crumb 2E(-1) 0.2 0.2
dust mite-crumb 5E(-1) 0.5 0.5
Cheese mite-crumb 8E(-1) 0.8 0.8
Clover mite-crumb 2E0 2 2
Monologue E1#1 10 10
Binary-eyelash mite 2*2^4 32 32
Binary-clover mite 2*2^5 64 64
Binary-dust mite 5*2^4 80 80
Binary-cheese mite, binary-pipsqueak 8*2^4 128 \(f_2(5)\) \(H_{\omega^2}(5)\) \(g_{\omega^7}(2)\)
Ternary-eyelash mite 2*3^4 162 \(f_2(5)\) \(H_{\omega^2}(5)\) \(g_{\omega^4\times2}(3)\)
Ternary-dust mite 5*3^4 405 \(f_2(6)\) \(H_{\omega^2}(6)\) \(g_{\omega^4\times5}(3)\)
Ternary-clover mite 2*3^5 486 \(f_2(6)\) \(H_{\omega^2}(6)\) \(g_{\omega^5\times2}(3)\)
Ternary-cheese mite 8*3^4 648 \(f_2(6)\) \(H_{\omega^2}(6)\) \(g_{\omega^4\times8}(10)\)
Binary-guppyspeck 2^10 1024 \(f_2(7)\) \(H_{\omega^2}(7)\) \(g_{\omega^{10}}(2)\)
Eyelash mite-chunk 2E3 2000 \(f_2(8)\) \(H_{\omega^2}(8)\) \(g_{\omega^3\times2}(10)\)
Ternary-pipsqueak 3^7 2187 \(f_2(8)\) \(H_{\omega^2}(8)\) \(g_{\omega^7}(3)\)
Dust mite-chunk 5E3 5000 \(f_2(9)\) \(H_{\omega^2}(9)\) \(g_{\omega^3\times5}(10)\)
Binary-squeaker 5*2^10 5120 \(f_2(9)\) \(H_{\omega^2}(9)\) \(g_{\omega^3\times5+\omega^2}(10)\)
Cheese mite-chunk 8E3 8000 \(f_2(10)\) \(H_{\omega^2}(10)\) \(g_{\omega^3\times8}(10)\)
Octal-eyelash mite 2*8^4 8192 \(f_2(10)\) \(H_{\omega^2}(10)\) \(g_{\omega^3\times8+\omega^2\times2}(10)\)
Eyelash mite, clover mite-chunk 2E4 20,000 \(f_2(11)\) \(H_{\omega^2}(11)\) \(g_{\omega^4\times2}(10)\)
Octal-dust mite 5*8^4 20,480 \(f_2(11)\) \(H_{\omega^2}(11)\) \(g_{\omega^4\times2}(10)\)
Octal-cheese mite, binary-small fry, Binary-guppycrumb, Binary-minnowspeck 8*8^4 = 2^15 32,768 \(f_2(11)\) \(H_{\omega^2}(11)\) \(g_{\omega^4\times3}(10)\)
Dust mite 5E4 50,000 \(f_2(12)\) \(H_{\omega^2}(12)\) \(g_{\omega^4\times5}(10)\)
Ternary-guppyspeck 3^10 59,049 \(f_2(12)\) \(H_{\omega^2}(12)\) \(g_{\omega^{10}}(3)\)
Octal-clover mite 2*8^5 65,536 \(f_2(12)\) \(H_{\omega^2}(12)\) \(g_{\omega^4\times6+\omega^3\times6}(10)\)
Cheese mite 8E4 80,000 \(f_2(13)\) \(H_{\omega^2}(13)\) \(g_{\omega^4\times8}(10)\)
Clover mite, Eyelash mite-bunch 2E5 200,000 \(f_2(14)\) \(H_{\omega^2}(14)\) \(g_{\omega^5\times2}(10)\)
Ternary-squeaker 5*3^10 295,245 \(f_2(14)\) \(H_{\omega^2}(14)\) \(g_{\omega^5\times3}(10)\)
Dust mite-bunch 5E5 500,000 \(f_2(15)\) \(H_{\omega^2}(15)\) \(g_{\omega^5\times5}(10)\)
Binary-guppychunk 2^19 524,288 \(f_2(15)\) \(H_{\omega^2}(15)\) \(g_{\omega^5\times5+\omega^4\times2}(10)\)
Cheese mite-bunch 8E5 800,000 \(f_2(16)\) \(H_{\omega^2}(16)\) \(g_{\omega^5\times8}(10)\)
Guppybit, Binary-minnowcrumb 2^20 1,048,576 \(f_2(16)\) \(H_{\omega^2}(16)\) \(g_{\omega^6}(10)\)
Clover mite-bunch 2E6 2,000,000 \(f_2(17)\) \(H_{\omega^2}(17)\) \(g_{\omega^6\times2}(10)\)
Octal-pipsqueak 8^7 2,097,152 \(f_2(17)\) \(H_{\omega^2}(17)\) \(g_{\omega^6\times2+\omega^5}(10)\)
Pipsqueak E7 10,000,000 \(f_2(19)\) \(H_{\omega^2}(19)\) \(g_{\omega^7}(10)\)
Ternary-small fry, Ternary-guppycrumb, ternary-minnowspeck 3^15 14,348,907 \(f_2(19)\) \(H_{\omega^2}(19)\) \(g_{\omega^7+\omega^6\times4}(10)\)
Binary-minnowchunk 2^24 16,777,216 \(f_2(20)\) \(H_{\omega^2}(20)\) \(g_{\omega^7+\omega^6\times7}(10)\)
Minnowbit, Binary-gobyspeck 2^25 33,554,432 \(f_2(21)\) \(H_{\omega^2}(21)\) \(g_{\omega^7\times3+\omega^6\times3}(10)\)
Binary-gobycrumb, Octal-guppyspeck 2^30 = 8^10 1,073,741,824 \(f_2(25)\) \(H_{\omega^2}(25)\) \(g_{\omega^9}(10)\)
Ternary-guppychunk 3^19 1,162,261,467 \(f_2(25)\) \(H_{\omega^2}(25)\) \(g_{\omega^9+\omega^8}(10)\)
Eyelash mite-crowd 2E9 2,000,000,000 \(f_2(26)\) \(H_{\omega^2}(26)\) \(g_{\omega^9\times2}(10)\)
Ternary-guppy, Ternary-minnowcrumb 3^20 3,386,784,401 \(f_2(27)\) \(H_{\omega^2}(27)\) \(g_{\omega^9\times3}(10)\)
Dust mite-crowd 5E9 5,000,000,000 \(f_2(27)\) \(H_{\omega^2}(27)\) \(g_{\omega^9\times5}(10)\)
Octal-squeaker 5*8^10 5,368,709,120 \(f_2(27)\) \(H_{\omega^2}(27)\) \(g_{\omega^9\times5+\omega^8\times4}(10)\)
Cheese mite-crowd 8E9 8,000,000,000 \(f_2(28)\) \(H_{\omega^2}(28)\) \(g_{\omega^9\times8}(10)\)
guppyspeck, dialogue 10^10 10,000,000,000 \(f_2(28)\) \(H_{\omega^2}(28)\) \(g_{\omega^\omega}(10)\)
Binary-gobychunk 2^34 17,179,869,184 \(f_2(29)\) \(H_{\omega^2}(29)\) \(g_{\omega^\omega+\omega^9\times7}(10)\)
Clover mite-crowd 2E10 20,000,000,000 \(f_2(29)\) \(H_{\omega^2}(29)\) \(g_{\omega^\omega\times2}(10)\)
Gobybit 2^35 34,359,738,368 \(f_2(30)\) \(H_{\omega^2}(30)\) \(g_{\omega^\omega\times3}(10)\)
Little squeaker 5E10 50,000,000,000 \(f_2(31)\) \(H_{\omega^2}(31)\) \(g_{\omega^\omega\times5}(10)\)
Ternary-minnowchunk 3^24 282,429,536,481 \(f_2(33)\) \(H_{\omega^2}(33)\) \(g_{\omega^{\omega+1}\times3}(10)\)
Ternary-minnow, Ternary-gobyspeck 3^25 847,288,609,443 \(f_2(34)\) \(H_{\omega^2}(34)\) \(g_{\omega^{\omega+1}\times8}(10)\)
Binary-gogolspeck, Quaternary-guppy 2^40 1,099,511,627,776 \(f_2(35)\) \(H_{\omega^2}(35)\) \(g_{\omega^{\omega+2}+\omega^{\omega+1}}(10)\)
Octal-small fry, Octal-guppycrumb, Octal-minnowspeck, Binary-gogolcrumb 8^15 35,184,372,088,832 \(f_2(40)\) \(H_{\omega^2}(40)\) \(g_{\omega^{\omega+3}\times4}(10)\)
Eyelash mite-swarm 2E14 200,000,000,000,000 \(f_2(42)\) \(H_{\omega^2}(42)\) \(g_{\omega^{\omega+4}\times2}(10)\)
Ternary-gobycrumb 3^30 205,891,132,094,649 \(f_2(42)\) \(H_{\omega^2}(42)\) \(g_{\omega^{\omega+4}\times2+\omega^{\omega+2}\times6}(10)\)
Dust mite-swarm 5E14 500,000,000,000,000 \(f_2(43)\) \(H_{\omega^2}(43)\) \(g_{\omega^{\omega+4}\times5}(10)\)
Binary-gogolchunk 2^49 562,949,953,421,312 \(f_2(44)\) \(H_{\omega^2}(44)\) \(g_{\omega^{\omega+4}\times6}(10)\)
cheese mite-swarm 8E14 800,000,000,000,000 \(f_2(44)\) \(H_{\omega^2}(44)\) \(g_{\omega^{\omega+4}\times8}(10)\)
Small fry, Guppycrumb, Minnowspeck E15 1,000,000,000,000,000 \(f_2(44)\) \(H_{\omega^2}(44)\) \(g_{\omega^{\omega+5}}(10)\)
Gogolbit 2^50 1,125,899,906,842,624 \(f_2(45)\) \(H_{\omega^2}(45)\) \(g_{\omega^{\omega+5}+\omega^{\omega+4}}(10)\)
Clover mite-swarm 2E15 2,000,000,000,000,000 \(f_2(45)\) \(H_{\omega^2}(45)\) \(g_{\omega^{\omega+5}\times2}(10)\)
Ternary-gobychunk 3^34 16,677,181,699,666,569 \(f_2(48)\) \(H_{\omega^2}(48)\) \(g_{\omega^{\omega+6}\times2}(10)\)
Ternary-goby 3^35 50,031,545,098,999,707 \(f_2(50)\) \(H_{\omega^2}(50)\) \(g_{\omega^{\omega+6}\times5}(10)\)
Octal-guppychunk 8^19 144,115,188,075,855,872 \(f_2(51)\) \(H_{\omega^2}(51)\) \(g_{\omega^{\omega+7}}(10)\)
Guppybyte, Octal-minnowcrumb 8^20 1,152,921,504,606,846,976 \(f_2(55)\) \(H_{\omega^2}(55)\) \(g_{\omega^{\omega+8}}(10)\)
Guppychunk 10^19 10,000,000,000,000,000,000 \(f_2(57)\) \(H_{\omega^2}(57)\) \(g_{\omega^{\omega+9}}(10)\)
Ternary-gogolspeck 3^40 12,157,665,459,056,928,801 \(f_2(57)\) \(H_{\omega^2}(57)\) \(g_{\omega^{\omega+9}+\omega^{\omega+8}\times2}(10)\)
Binary-prawn 2^65 36,893,488,147,419,103,232 \(f_2(59)\) \(H_{\omega^2}(59)\) \(g_{\omega^{\omega+9}\times4}(10)\)
Guppy, Minnowcrumb E20 1020 \(f_2(60)\) \(H_{\omega^2}(60)\) \(g_{\omega^{\omega\times2}}(10)\)
Binary-ogolspeck 2^70 ~1.180592*1021 \(f_2(64)\) \(H_{\omega^2}(64)\) \(g_{\omega^{\omega\times2+1}}(10)\)
Ternary-gogolcrumb 3^45 ~2.954312*1021 \(f_2(65)\) \(H_{\omega^2}(65)\) \(g_{\omega^{\omega\times2+1}\times3}(10)\)
Octal-minnowchunk 8^24 ~4.722366*1021 \(f_2(66)\) \(H_{\omega^2}(66)\) \(g_{\omega^{\omega\times2+1}\times5}(10)\)
Ternary-gogolchunk 3^49 ~2.392293*1023 \(f_2(71)\) \(H_{\omega^2}(71)\) \(g_{\omega^{\omega\times2+3}\times2}(10)\)
Minnowbyte, Binary-lightweight, Octal-gobyspeck, Binary-ogolcrumb 8^25 ~3.777893*1023 \(f_2(72)\) \(H_{\omega^2}(72)\) \(g_{\omega^{\omega\times2+3}\times3}(10)\)
Binary-ogolchunk 2^79 ~6.044629*1023 \(f_2(73)\) \(H_{\omega^2}(73)\) \(g_{\omega^{\omega\times2+3}\times6}(10)\)
Ternary-gogol 3^50 ~7.178980*1023 \(f_2(73)\) \(H_{\omega^2}(73)\) \(g_{\omega^{\omega\times2+3}\times7}(10)\)
Minnowchunk 10^24 1024 \(f_2(73)\) \(H_{\omega^2}(73)\) \(g_{\omega^{\omega\times2+4}}(10)\)
Ogolbit 2^80 ~1.208926*1024 \(f_2(74)\) \(H_{\omega^2}(74)\) \(g_{\omega^{\omega\times2+4}}(10)\)
Minnow, Gobyspeck E25 1025 \(f_2(77)\) \(H_{\omega^2}(77)\) \(g_{\omega^{\omega\times2+5}}(10)\)
Binary-twerpuloid 2^85 ~3.868562*1025 \(f_2(79)\) \(H_{\omega^2}(79)\) \(g_{\omega^{\omega\times2+5}\times4}(10)\)
Binary-googolspeck, Octal-gobycrumb 2^90 = 8^30 ~1.237940*1027 \(f_2(84)\) \(H_{\omega^2}(84)\) \(g_{\omega^{\omega\times2+7}}(10)\)
Binary-googolcrumb 2^95 ~3.961408*1028 \(f_2(88)\) \(H_{\omega^2}(88)\) \(g_{\omega^{\omega\times2+7}}(10)\)
Binary-googolchunk 2^99 ~6.338253*1029 \(f_2(92)\) \(H_{\omega^2}(92)\) \(g_{\omega^{\omega\times2+9}\times6}(10)\)
Gobycrumb 10^30 1030 \(f_2(93)\) \(H_{\omega^2}(93)\) \(g_{\omega^{\omega\times3}}(10)\)
Googolbit, Binary-guppyding 2^100 ~1.267651*1030 \(f_2(93)\) \(H_{\omega^2}(93)\) \(g_{\omega^{\omega\times3}}(10)\)
Octal-gobychunk 8^34 ~5.070602*1030 \(f_2(95)\) \(H_{\omega^2}(95)\) \(g_{\omega^{\omega\times3}\times5}(10)\)
Gobybyte 8^35 ~4.056482*1031 \(f_2(98)\) \(H_{\omega^2}(98)\) \(g_{\omega^{\omega\times3+1}\times4}(10)\)
Gobychunk 10^34 1034 \(f_2(107)\) \(H_{\omega^2}(107)\) \(g_{\omega^{\omega\times3+4}}(10)\)
Goby E35 1035 \(f_2(109)\) \(H_{\omega^2}(109)\) \(g_{\omega^{\omega\times3+5}}(10)\)
Octal-gogolspeck 8^40 ~1.329228*1036 \(f_2(113)\) \(H_{\omega^2}(113)\) \(g_{\omega^{\omega\times3+6}}(10)\)
Gogolspeck 10^40 1040 \(f_2(126)\) \(H_{\omega^2}(126)\) \(g_{\omega^{\omega\times4}}(10)\)
Octal-gogolcrumb 8^45 ~4.355614*1040 \(f_2(128)\) \(H_{\omega^2}(128)\) \(g_{\omega^{\omega\times4}\times4}(10)\)
Octal-gogolchunk 8^49 ~1.784060*1044 \(f_2(140)\) \(H_{\omega^2}(140)\) \(g_{\omega^{\omega\times4+4}\times2}(10)\)
Gogolcrumb 10^45 1045 \(f_2(142)\) \(H_{\omega^2}(142)\) \(g_{\omega^{\omega\times4+5}}(10)\)
Gogolbyte 8^50 ~1.427248*1045 \(f_2(143)\) \(H_{\omega^2}(143)\) \(g_{\omega^{\omega\times4+5}}(10)\)
Gogolchunk 10^49 1049 \(f_2(155)\) \(H_{\omega^2}(155)\) \(g_{\omega^{\omega\times4+9}}(10)\)
Gogol E50 1050 \(f_2(159)\) \(H_{\omega^2}(159)\) \(g_{\omega^{\omega\times5}}(10)\)
Octal-prawn 865 = 2195 ~5.021681*1058 \(f_2(187)\) \(H_{\omega^2}(187)\) \(g_{\omega^{65}}(8)\)
Octal-ogolspeck 870 = 2210 ~1.645505*1063 \(f_2(202)\) \(H_{\omega^2}(187)\) \(g_{\omega^{\omega 6+3}}(10)\)
Jumbo shrimp E65 1065
Octal-lightweight, Octal-ogolcrumb 8^75 ~5.391989*1067
Ogolspeck 10^70 1070
Octal-ogolchunk 8^79 ~2.208559*1071
Ogolbyte 8^80 ~1.766847*1072
Lightweight, Ogolcrumb E75 1075
Binary-gogolding 2^250 ~1.809251*1075
Octal-twerpuloid 8^85 ~5.789604*1076
Ogolchunk 10^79 1079
Ogol E80 1080
Octal-googolspeck 8^90 ~1.897137*1081
Tiny twerpuloid E85 1085
Octal-googolcrumb 8^95 ~6.216540*1085
Octal-googolchunk 8^99 ~2.546295*1089
Googolspeck E90 1090
Googolbyte, Octal-guppyding 8^100 ~2.037036*1090
Googolcrumb E95 1095
Googolchunk E99 1099
Guppyding E100 10100 \(f_2(324)\) \(H_{\omega^2}(324)\) \(g_{\omega^{\omega^2}}(10)\)
Googolbunch E101 10101 \(f_2(327)\) \(H_{\omega^2}(327)\) \(g_{\omega^{\omega^2+1}}(10)\)
Googolcrowd E105 10105 \(f_2(340)\) \(H_{\omega^2}(340)\) \(g_{\omega^{\omega^2+5}}(10)\)
Googolswarm E110 10110 \(f_2(357)\) \(H_{\omega^2}(357)\) \(g_{\omega^{\omega^2+\omega}}(10)\)
Guppychime E200 10200 \(f_2(655)\) \(H_{\omega^2}(655)\) \(g_{\omega^{\omega^2\times2}}(10)\)
Gogolding E250 10250 \(f_2(821)\) \(H_{\omega^2}(821)\) \(g_{\omega^{\omega^2\times2+\omega\times5}}(10)\)
Ecetonspeck E293 10293 \(f_2(963)\) \(H_{\omega^2}(963)\) \(g_{\omega^{\omega^2\times2+\omega\times9+3}}(10)\)
Ecetoncrumb E298 10298 \(f_2(980)\) \(H_{\omega^2}(980)\) \(g_{\omega^{\omega^2\times2+\omega\times9+8}}(10)\)
Ecetonchunk E302 10302 \(f_2(993)\) \(H_{\omega^2}(993)\) \(g_{\omega^{\omega^2\times3+2}}(10)\)
Ecetonbunch E304 10304 \(f_2(1000)\) \(H_{\omega^2}(1000)\) \(g_{\omega^{\omega^2\times3+4}}(10)\)
Ecetoncrowd E308 10308 \(f_2(1013)\) \(H_{\omega^2}(1013)\) \(g_{\omega^{\omega^2\times3+8}}(10)\)
Ecetonswarm E313 10313 \(f_2(1030)\) \(H_{\omega^2}(1030)\) \(g_{\omega^{\omega^2\times3+\omega+3}}(10)\)
Ogolding E400 10400 \(f_2(1318)\) \(H_{\omega^2}(1318)\) \(g_{\omega^{\omega^2\times4}}(10)\)
Gogolchime, Googolding E500 10500 \(f_2(1650)\) \(H_{\omega^2}(1650)\) \(g_{\omega^{\omega^2\times5}}(10)\)
Ogolchime E800 10800 \(f^2_2(8)\) \(H_{\omega^2\times2}(8)\) \(g_{\omega^{\omega^2\times8}}(10)\)
Googolchime, Guppybell E1000 101000 \(f^2_2(8)\) \(H_{\omega^2\times2}(8)\) \(g_{\omega^{\omega^3}}(10)\)
Ecetonding E1515 101515 \(f^2_2(9)\) \(H_{\omega^2\times2}(9)\) \(g_{\omega^{\omega^3+\omega^2\times5+\omega+5}}(10)\)
Guppytoll E2000 102000 \(f^2_2(9)\) \(H_{\omega^2\times2}(9)\) \(g_{\omega^{\omega^3\times2}}(10)\)
Gogolbell E2500 102500 \(f^2_2(9)\) \(H_{\omega^2\times2}(9)\) \(g_{\omega^{\omega^3\times2+\omega^2\times5}}(10)\)
Ecetonchime E3030 103030 \(f^2_2(9)\) \(H_{\omega^2\times2}(9)\) \(g_{\omega^{\omega^3\times3+\omega\times3}}(10)\)
Ogolbell E4000 104000 \(f^2_2(10)\) \(H_{\omega^2\times2}(10)\) \(g_{\omega^{\omega^3\times4}}(19)\)
Googolbell, Gogoltoll E5000 105000 \(f^2_2(10)\) \(H_{\omega^2\times2}(10)\) \(g_{\omega^{\omega^3\times5}}(10)\)
Ogoltoll E8000 108000 \(f^2_2(11)\) \(H_{\omega^2\times2}(11)\) \(g_{\omega^{\omega^3\times8}}(10)\)
Googoltoll E10,000 1010,000 \(f^2_2(11)\) \(H_{\omega^2\times2}(11)\) \(g_{\omega^{\omega^4}}(10)\)
Ecetonbell E15,150 1015,150 \(f^2_2(12)\) \(H_{\omega^2\times2}(12)\) \(g_{\omega^{\omega^4+\omega^3\times5+\omega^2+\omega+5}}(10)\)
Guppygong E20,000 1020,000 \(f^2_2(12)\) \(H_{\omega^2\times2}(12)\) \(g_{\omega^{\omega^4\times2}}(10)\)
Ecetontoll E30,300 1030,300 \(f^2_2(12)\) \(H_{\omega^2\times2}(12)\) \(g_{\omega^{\omega^4\times3+\omega^2\times3}}(10)\)
Gogolgong E50,000 1050,000 \(f^2_2(13)\) \(H_{\omega^2\times2}(13)\) \(g_{\omega^{\omega^4\times5}}(10)\)
Ogolgong E80,000 1080,000 \(f^2_2(14)\) \(H_{\omega^2\times2}(14)\) \(g_{\omega^{\omega^4\times8}}(10)\)
Googolgong E100,000 10100,000 \(f^2_2(14)\) \(H_{\omega^2\times2}(14)\) \(g_{\omega^{\omega^5}}(10)\)
Ecetongong E303,000 10303,000 \(f^2_2(15)\) \(H_{\omega^2\times2}(15)\) \(g_{\omega^{\omega^5\times3+\omega^3\times3}}(10)\)
Milliplexion E6#2 \(10^{10^6}\) \(f^2_2(17)\) \(H_{\omega^2\times2}(17)\) \(g_{\omega^{\omega^6}}(10)\)
Guppybong E20,000,000 \(10^{2\times10^7}\) \(f^2_2(21)\) \(H_{\omega^2\times2}(21)\) \(g_{\omega^{\omega^7\times2}}(10)\)
Gogolbong E50,000,000 \(10^{5\times10^7}\) \(f^2_2(22)\) \(H_{\omega^2\times2}(22)\) \(g_{\omega^{\omega^7\times5}}(10)\)
Ogolbong E80,000,000 \(10^{8\times10^7}\) \(f^2_2(23)\) \(H_{\omega^2\times2}(23)\) \(g_{\omega^{\omega^7\times8}}(10)\)
Googolbong E100,000,000 \(10^{10^8}\) \(f^2_2(23)\) \(H_{\omega^2\times2}(23)\) \(g_{\omega^{\omega^8}}(10)\)
Ecetonbong E303,000,000 \(10^{3.03\times10^8}\) \(f^2_2(25)\) \(H_{\omega^2\times2}(25)\) \(g_{\omega^{\omega^8\times3+\omega^6\times3}}(10)\)
Billiplexion E9#2 \(10^{10^9}\) \(f^2_2(26)\) \(H_{\omega^2\times2}(26)\) \(g_{\omega^{\omega^9}}(10)\)
Trialogue E1#3 \(10^{10^{10}}\) \(f^2_2(30)\) \(H_{\omega^2\times2}(30)\) \(g_{\omega^{\omega^\omega}}(10)\)
Guppythrong E20,000,000,000 \(10^{2\times10^{10}}\) \(g_{\omega^{\omega^\omega\times2}}(10)\)
Gogolthrong E50,000,000,000 \(10^{5\times10^{10}}\) \(g_{\omega^{\omega^\omega\times5}}(10)\)
Oogolthrong E80,000,000,000 \(10^{8\times10^{10}}\) \(g_{\omega^{\omega^\omega\times8}}(10)\)
Googolthrong E100,000,000,000 \(10^{10^{11}}\) \(g_{\omega^{\omega^{\omega+1}}}(10)\)
Ecetonthrong E303,000,000,000 \(10^{3.03\times10^{11}}\) \(g_{\omega^{\omega^{\omega+1}\times3+\omega^9\times3}}(10)\)
Trilliplexion E12#2 \(10^{10^{12}}\) \(g_{\omega^{\omega^{\omega+2}}}(10)\)
Guppygandingan E20,000,000,000,000 \(10^{2\times10^{13}}\) \(g_{\omega^{\omega^{\omega+3}\times2}}(10)\)
Gogolgandingan E50,000,000,000,000 \(10^{5\times10^{13}}\) \(g_{\omega^{\omega^{\omega+3}\times5}}(10)\)
Ogolgandingan E80,000,000,000,000 \(10^{8\times10^{13}}\) \(g_{\omega^{\omega^{\omega+3}\times8}}(10)\)
Googolgandingan,Googolquadrigong E100,000,000,000,000 \(10^{10^{14}}\) \(g_{\omega^{\omega^{\omega+4}}}(10)\)
Ecetongandingan E303,000,000,000,000 \(10^{3.03\times10^{14}}\) \(g_{\omega^{\omega^{\omega+4}\times3+\omega^{\omega+2}\times3}}(10)\)
Googolquintigong EE17 \(10^{10^{17}}\) \(g_{\omega^{\omega^{\omega+7}}}(10)\)
Googolsextigong, Guppyplex EE20 \(10^{10^{20}}\) \(g_{\omega^{\omega^{\omega\times2}}}(10)\)
Googolseptigong EE23 \(10^{10^{23}}\) \(g_{\omega^{\omega^{\omega\times2+3}}}(10)\)
Googoloctigong EE26 \(10^{10^{26}}\) \(g_{\omega^{\omega^{\omega\times2+6}}}(10)\)
Googolnonigong EE29 \(10^{10^{29}}\) \(g_{\omega^{\omega^{\omega\times2+9}}}(10)\)
Googoldecigong EE32 \(10^{10^{32}}\) \(g_{\omega^{\omega^{\omega\times3+2}}}(10)\)
Googol-undecigong EE35 \(10^{10^{35}}\) \(g_{\omega^{\omega^{\omega\times3+5}}}(10)\)
Googol-duodecigong EE38 \(10^{10^{38}}\) \(g_{\omega^{\omega^{\omega\times3+8}}}(10)\)
Googol-tredecigong EE41 \(10^{10^{41}}\) \(g_{\omega^{\omega^{\omega\times4+1}}}(10)\)
Googol-quattuordecigong EE44 \(10^{10^{44}}\) \(g_{\omega^{\omega^{\omega\times4+4}}}(10)\)
Googol-quindecigong EE47 \(10^{10^{47}}\) \(g_{\omega^{\omega^{\omega\times4+7}}}(10)\)
Googol-sexdecigong, Gogolduplex EE50 \(10^{10^{50}}\) \(g_{\omega^{\omega^{\omega\times5}}}(10)\)
Googol-septendecigong EE53 \(10^{10^{53}}\) \(g_{\omega^{\omega^{\omega\times5+3}}}(10)\)
Googol-octodecigong EE56 \(10^{10^{56}}\) \(g_{\omega^{\omega^{\omega\times5+6}}}(10)\)
Googol-novemdecigong EE59 \(10^{10^{59}}\) \(g_{\omega^{\omega^{\omega\times5+9}}}(10)\)
Googolvigintigong EE62 \(10^{10^{62}}\) \(g_{\omega^{\omega^{\omega\times6+2}}}(10)\)
Googoltrigintigong EE92 \(10^{10^{92}}\) \(g_{\omega^{\omega^{\omega\times9+2}}}(10)\)
Googolquadragintigong EE122 \(10^{10^{122}}\) \(g_{\omega^{\omega^{\omega^2+\omega\times2+2}}}(10)\)
Googolquinquagintigong EE152 \(10^{10^{152}}\) \(g_{\omega^{\omega^{\omega^2+\omega\times5+2}}}(10)\)
Googolsexagintigong EE182 \(10^{10^{182}}\) \(g_{\omega^{\omega^{\omega^2+\omega\times8+2}}}(10)\)
Googolseptuagintigong EE212 \(10^{10^{212}}\) \(g_{\omega^{\omega^{\omega^2\times2+\omega+2}}}(10)\)
Googoloctogintigong E242 \(10^{10^{242}}\) \(g_{\omega^{\omega^{\omega^2\times2+\omega\times4+2}}}(10)\)
Googolnonigintigong EE272 \(10^{10^{272}}\) \(g_{\omega^{\omega^{\omega^2\times2+\omega\times7+2}}}(10)\)
Googolcentigong EE302 \(10^{10^{302}}\) \(g_{\omega^{\omega^{\omega^2\times3+2}}}(10)\)
Googolmilligong EE3002 \(10^{10^{3002}}\) \(g_{\omega^{\omega^{\omega^3\times3+2}}}(10)\)
Googolmilli-milligong EE3,000,002 \(10^{10^{3,000,002}}\) \(g_{\omega^{\omega^{\omega^6\times3+2}}}(10)\)
Guppyduplex EEE20 \(10^{10^{10^{20}}}\) \(g_{\omega^{\omega^{\omega^{\omega\times2}}}}(10)\)
Guppytriplex EEEE20 \(10^{10^{10^{10^{20}}}}\) \(g_{\omega\uparrow\uparrow5}(10)\)
Guppyquadriplex EEEEE20 \(10^{10^{10^{10^{10^{20}}}}}\) \(g_{\omega\uparrow\uparrow6}(10)\)
Guppyquintiplex EEEEEE20 \(g_{\omega\uparrow\uparrow7}(10)\)
Guppysextiplex E20#7 \(g_{\omega\uparrow\uparrow8}(10)\)
Guppyseptiplex E20#8 \(g_{\omega\uparrow\uparrow9}(10)\)
Guppyoctiplex E20#9 \(g_{\varepsilon_0}(10)\)
Guppynoniplex E20#10 \(g_{\varepsilon_0^{\varepsilon_0}}(10)\)
Guppydeciplex E20#11 \(g_{\varepsilon_0\uparrow\uparrow3}(10)\)
Guppyvigintiplex E20#21 \(g_{\varepsilon_1\uparrow\uparrow3}(10)\)
Guppytrigintiplex E20#31 \(g_{\varepsilon_2\uparrow\uparrow3}(10)\)
Guppyquadragintiplex E20#41 \(g_{\varepsilon_3\uparrow\uparrow3}(10)\)
Guppyquinquagintiplex E20#51 \(g_{\varepsilon_4\uparrow\uparrow3}(10)\)
Guppysexagintiplex E20#61 \(g_{\varepsilon_5\uparrow\uparrow3}(10)\)
Guppyseptuagintiplex E20#71 \(g_{\varepsilon_6\uparrow\uparrow3}(10)\)
Guppyoctogintiplex E20#81 \(g_{\varepsilon_7\uparrow\uparrow3}(10)\)
Guppynovagintiplex E20#91 \(g_{\varepsilon_8\uparrow\uparrow3}(10)\)
Guppycentiplex E20#101 \(g_{\varepsilon_9\uparrow\uparrow3}(10)\)
Guppymilliplex E20#1001 \(g_{\varepsilon_{\omega^2}\uparrow\uparrow3}(10)\)
Guppymilli-milliplex E20#1,000,001 \(g_{\varepsilon_{\omega^5}\uparrow\uparrow3}(10)\)

SourcesEdit

  1. Sbiis Saibian, Hyper-E Numbers - Large Numbers

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.