## FANDOM

9,739 Pages

The gargantuul regiment is a series of numbers from E100#100#100#100#100#100#100#100#100 to E1#1#1#1#1#1#1#1#1#10,000 defined using Hyper-E Notation (i.e. beginning from gargantuul and up to myria-endekaxis).[1] The numbers were coined by Sbiis Saibian.

 Previous regiment Next regiment Ginorgol regiment Googondol regiment

## List of numbers of the regiment Edit

 Name of number Hyper-E Notation (exact equality) Arrow notation (approximation) gargantuul E100#100#100#100#100#100#100#100#100 \(10\uparrow^9 100\) ginorgolennex E100#100#100#100#100#100#100#100#1#2 \(10\uparrow^9 (10\uparrow^8 100)\) ginorgoloctexiennex E100#100#100#100#100#100#100#100#2#2 \(10\uparrow^9 (10\uparrow^8 (10\uparrow^8 100))\) ginorgolduoctexiennex E100#100#100#100#100#100#100#100#3#2 \(10\uparrow^9 (10\uparrow^8 (10\uparrow^8 (10\uparrow^8 100)))\) gargantuulennex E100#100#100#100#100#100#100#100#100#2 \(10\uparrow^9 (10\uparrow^9 100)\) ginorgolduennex E100#100#100#100#100#100#100#100#1#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^8 100))\) ginorgoloctexiduennex E100#100#100#100#100#100#100#100#2#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^8 (10\uparrow^8 100)))\) ginorgolduoctexiduennex E100#100#100#100#100#100#100#100#3#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^8 (10\uparrow^8 (10\uparrow^8 100))))\) gargantuulduennex E100#100#100#100#100#100#100#100#100#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^9 100))\) gargantuulchime E1000#1000#1000#1000#1000#1000#1000#1000#1000 \(10\uparrow^9 1000\) gargantuulennexichime E1000#1000#1000#1000#1000#1000#1000#1000#1000#2 \(10\uparrow^9 (10\uparrow^9 1000)\) gargantuulennexichime E1000#1000#1000#1000#1000#1000#1000#1000#1000#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^9 1000))\) gargantuultoll E10,000#10,000#10,000#10,000#10,000# 10,000#10,000#10,000#10,000 \(10\uparrow^9 10^4\) gargantuulennexitoll E10,000#10,000#10,000#10,000#10,000# 10,000#10,000#10,000#10,000#2 \(10\uparrow^9 (10\uparrow^9 10^4)\) gargantuulduennexitoll E10,000#10,000#10,000#10,000#10,000# 10,000#10,000#10,000#10,000#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^9 10^4))\) gargantuulgong E100,000#100,000#100,000#100,000#100,000# 100,000#100,000#100,000#100,000 \(10\uparrow^9 10^5\) gargantuulennexigong E100,000#100,000#100,000#100,000#100,000# 100,000#100,000#100,000#100,000#2 \(10\uparrow^9 (10\uparrow^9 10^5)\) gargantuulduennexigong E100,000#100,000#100,000#100,000#100,000# 100,000#100,000#100,000#100,000#3 \(10\uparrow^9 (10\uparrow^9 (10\uparrow^9 10^5))\) gargantuulbong E100,000,000#100,000,000#100,000,000# ... ...100,000,000#100,000,000#100,000,000 w/9 100,000,000s \(10\uparrow^9 10^8\) gargantuulennexibong E100,000,000#100,000,000#100,000,000# ... ... #100,000,000#100,000,000#100,000,000#2 w/9 100,000,000s \(10\uparrow^9 (10\uparrow^9 10^8)\) gargantuulduennexibong E100,000,000#100,000,000#100,000,000# ... ... #100,000,000#100,000,000#100,000,000#3 w/9 100,000,000s \(10\uparrow^9 (10\uparrow^9 (10\uparrow^9 10^8))\) gargantuulthrong E100,000,000,000#100,000,000,000# ... ...#100,000,000,000#100,000,000,000 w/9 100,000,000,000s \(10\uparrow^9 10^{11}\) gargantuulennexithrong E100,000,000,000#100,000,000,000# ... ... #100,000,000,000#100,000,000,000#2 w/9 100,000,000,000s \(10\uparrow^9 (10\uparrow^9 10^{11})\) gargantuulduennexithrong E100,000,000,000#100,000,000,000# ... ... #100,000,000,000#100,000,000,000#3 w/9 100,000,000,000s \(10\uparrow^9 (10\uparrow^9 (10\uparrow^9 10^{11}))\) googolennex E100#1#1#1#1#1#1#1#1#2 \(10\uparrow^9 10^{100}\) grangolennex E100#100#1#1#1#1#1#1#1#2 \(10\uparrow^9 (10 \uparrow^2 100)\) greagolennex E100#100#100#1#1#1#1#1#1#2 \(10\uparrow^9 (10 \uparrow^3 100)\) gigangolennex E100#100#100#100#1#1#1#1#1#2 \(10\uparrow^9 (10 \uparrow^4 100)\) gorgegolennex E100#100#100#100#100#1#1#1#1#2 \(10\uparrow^9 (10 \uparrow^5 100)\) gulgolennex E100#100#100#100#100#100#1#1#1#2 \(10\uparrow^9 (10 \uparrow^6 100)\) gaspgolennex E100#100#100#100#100#100#100#1#1#2 \(10\uparrow^9 (10 \uparrow^7 100)\) gargantuulplex E(E100#100#100#100#100#100#100#100#100) \(10\uparrow (10 \uparrow^9 100)\) gargantuuldex E100#(E100#100#100#100#100#100#100#100#100) \(10\uparrow^2 (10 \uparrow^9 100)\) gargantuulthrex E100#100# (E100#100#100#100#100#100#100#100#100) \(10\uparrow^3 (10 \uparrow^9 100)\) gargantuultetrex E100#100#100# (E100#100#100#100#100#100#100#100#100) \(10\uparrow^4 (10 \uparrow^9 100)\) gargantuulpentex E100#100#100#100# (E100#100#100#100#100#100#100#100#100) \(10\uparrow^5 (10 \uparrow^9 100)\) gargantuulhex E100#100#100#100#100# (E100#100#100#100#100#100#100#100#100) \(10\uparrow^6 (10 \uparrow^9 100)\) gargantuulheptex E100#100#100#100#100#100# (E100#100#100#100#100#100#100#100#100) \(10\uparrow^7 (10 \uparrow^9 100)\) gargantuuloctex E100#100#100#100#100#100#100# (E100#100#100#100#100#100#100#100#100) = E100#100#100#100#100#100#100#100#101 \(10\uparrow^8 (10 \uparrow^9 100)\) ecetonennex E303#1#1#1#1#1#1#1#1#2 \(10 \uparrow^9 10^{303}\) ecetonduennex E303#1#1#1#1#1#1#1#1#3 \(10 \uparrow^9 (10 \uparrow^9 10^{303})\) tria-endekaxis E1#1#1#1#1#1#1#1#1#3 \(10 \uparrow^{10} 3\) tetra-endekaxis E1#1#1#1#1#1#1#1#1#4 \(10 \uparrow^{10} 4\) deka-endekaxis E1#1#1#1#1#1#1#1#1#10 \(10 \uparrow^{10} 10\) hecta-endekaxis E1#1#1#1#1#1#1#1#1#100 \(10 \uparrow^{10} 100\) chilia-endekaxis E1#1#1#1#1#1#1#1#1#1000 \(10 \uparrow^{10} 1000\) myria-endekaxis E1#1#1#1#1#1#1#1#1#10,000 \(10 \uparrow^{10} 10000\)

## Sources Edit

1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers