## FANDOM

10,121 Pages

The gaspgol regiment is a series of numbers from E100#100#100#100#100#100#100 to E1#1#1#1#1#1#1#10,000 defined using Hyper-E Notation (i.e. beginning from gaspgol and up to myria-ennaxis).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Gulgol regiment Ginorgol regiment

## List of numbers of the regiment Edit

Name of number Hyper-E Notation (definition) Arrow notation (approximation)
gaspgol E100#100#100#100#100#100#100 \(10\uparrow^7 100\)
gulgolheptex E100#100#100#100#100#100#1#2 \(10\uparrow^7 10\uparrow^6 100\)
gulgolhexiheptex E100#100#100#100#100#100#2#2 \(10\uparrow^7 10\uparrow^6 (10\uparrow^6 100)\)
gulgolduhexiheptex E100#100#100#100#100#100#3#2 \(10\uparrow^7 10\uparrow^6 (10\uparrow^6 (10\uparrow^6 100))\)
gaspgolheptex E100#100#100#100#100#100#100#2 \(10\uparrow^7 (10\uparrow^7 100)\)
gulgolduheptex E100#100#100#100#100#100#1#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^6 100))\)
gulgolhexiduheptex E100#100#100#100#100#100#2#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^6 (10\uparrow^6 100)))\)
gulgolduhexiduheptex E100#100#100#100#100#100#3#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^6 (10\uparrow^6 (10\uparrow^6 100))))\)
gaspgolduheptex E100#100#100#100#100#100#100#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^7 100))\)
gaspgolchime E1000#1000#1000#1000#1000#1000#1000 \(10\uparrow^7 1000\)
gaspgolheptexichime E1000#1000#1000#1000#1000#1000#1000#2 \(10\uparrow^7 (10\uparrow^7 1000)\)
gaspgolduheptexichime E1000#1000#1000#1000#1000#1000#1000#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^7 1000))\)
gaspgoltoll E10,000#10,000#10,000#10,000#10,000#10,000#10,000 \(10\uparrow^7 10000\)
gaspgolheptexitoll E10,000#10,000#10,000#10,000#10,000#10,000#10,000#2 \(10\uparrow^7 (10\uparrow^7 10000)\)
gaspgolduheptexitoll E10,000#10,000#10,000#10,000#10,000#10,000#10,000#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^7 10000))\)
gaspgolgong E100,000#100,000#100,000#100,000#100,000#100,000#100,000 \(10\uparrow^7 10^5\)
gaspgolheptexigong E100,000#100,000#100,000#100,000#100,000#100,000#100,000#2 \(10\uparrow^7 (10\uparrow^7 10^5)\)
gaspgolduheptexigong E100,000#100,000#100,000#100,000#100,000#100,000#100,000#3 \(10\uparrow^7 (10\uparrow^7 (10\uparrow^7 10^5))\)
gaspgolbong E100,000,000#100,000,000#100,000,000#

100,000,000#100,000,000#100,000,000#100,000,000

\(10\uparrow^7 10^8\)
gaspgolheptexibong E100,000,000#100,000,000#100,000,000#

100,000,000#100,000,000#100,000,000#100,000,000#2

\(10\uparrow^7 (10\uparrow^7 10^8)\)
gaspgolthrong E100,000,000,000#100,000,000,000# ... ... ... ... #100,000,000,000

w/7 100,000,000,000s

\(10\uparrow^7 10^{11}\)
gaspgolheptexithrong E100,000,000,000#100,000,000,000# ... ... ... ... #100,000,000,000#2

w/7 100,000,000,000s

\(10\uparrow^7 (10\uparrow^7 10^{11})\)
gagolchime E1#1#1#1#1#1#1000 \(10\uparrow^7 1000\)
gagoltoll E1#1#1#1#1#1#10,000 \(10\uparrow^7 10000\)
gagolgong E1#1#1#1#1#1#100,000 \(10\uparrow^7 10^5\)
gagolbong E1#1#1#1#1#1#100,000,000 \(10\uparrow^7 10^8\)
gagolthrong E1#1#1#1#1#1#100,000,000,000 \(10\uparrow^7 10^{11}\)
googolheptex E100#1#1#1#1#1#1#2 \(10\uparrow^7 10^{100}\)
grangolheptex E100#100#1#1#1#1#1#2 \(10\uparrow^7 (10\uparrow^2 100)\)
greagolheptex E100#100#100#1#1#1#1#2 \(10\uparrow^7 (10\uparrow^3 100)\)
gigangolheptex E100#100#100#100#1#1#1#2 \(10\uparrow^7 (10\uparrow^4 100)\)
gorgegolheptex E100#100#100#100#100#1#1#2 \(10\uparrow^7 (10\uparrow^5 100)\)
gaspgolplex E(E100#100#100#100#100#100#100) \(10\uparrow (10\uparrow^7 100)\)
gaspgoldex E100#(E100#100#100#100#100#100#100) \(10\uparrow^2 (10\uparrow^7 100)\)
gaspgolthrex E100#100#(E100#100#100#100#100#100#100) \(10\uparrow^3 (10\uparrow^7 100)\)
gaspgoltetrex E100#100#100#(E100#100#100#100#100#100#100) \(10\uparrow^4 (10\uparrow^7 100)\)
gaspgolpentex E100#100#100#100#(E100#100#100#100#100#100#100) \(10\uparrow^5 (10\uparrow^7 100)\)
gaspgolhex E100#100#100#100#100#(E100#100#100#100#100#100#100)

= E100#100#100#100#100#100#101

\(10\uparrow^6 (10\uparrow^7 100)\)
ecetonheptex E303#1#1#1#1#1#1#2 \(10\uparrow^7 10^{303}\)
ecetonduheptex E303#1#1#1#1#1#1#3 \(10\uparrow^7 (10\uparrow^7 10^{303})\)
tria-ennaxis E1#1#1#1#1#1#1#3 \(10\uparrow^8 3\)
tetra-ennaxis E1#1#1#1#1#1#1#4 \(10\uparrow^8 4\)
deka-ennaxis E1#1#1#1#1#1#1#10 \(10\uparrow^8 10\)
hecta-ennaxis E1#1#1#1#1#1#1#100 \(10\uparrow^8 100\)
chilia-ennaxis E1#1#1#1#1#1#1#1000 \(10\uparrow^8 1000\)
myria-ennaxis E1#1#1#1#1#1#1#10,000 \(10\uparrow^8 10000\)

## Etymology Edit

Parts of names Meaning
tria 3
tetra 4
penta 5
hexa 6
hepta 7
octa 8
enna 9
deka 10
hecta 100
chilia 1000
myria 10000
ding multiply the base value by 5
chime multiply the base value by 10
bell multiply the base value by 50
toll multiply the base value by 100
gong multiply the base value by 1000
bong multiply the base value by \(10^6\)
throng multiply the base value by \(10^9\)
gandingan multiply the base value by \(10^{12}\)

## Sources Edit

1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers