## FANDOM

10,407 Pages

The ginorgol regiment is a series of numbers from E100#100#100#100#100#100#100#100 to E1#1#1#1#1#1#1#1#10,000 defined using Hyper-E Notation (i.e. beginning from ginorgol and up to myria-dekaxis).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Gaspgol regiment Gargantuul regiment

## List of numbers of the regiment

Name of number Hyper-E Notation (definition) Arrow notation (approximation)
ginorgol E100#100#100#100#100#100#100#100 \(10\uparrow^8 100\)
gaspgoloctex E100#100#100#100#100#100#100#1#2 \(10\uparrow^8 (10\uparrow^7 100)\)
gaspgolheptexioctex E100#100#100#100#100#100#100#2#2 \(10\uparrow^8 (10\uparrow^7 (10\uparrow^7 100))\)
gaspgolduheptexioctex E100#100#100#100#100#100#100#3#2 \(10\uparrow^8 (10\uparrow^7 (10\uparrow^7 (10\uparrow^7 100)))\)
ginorgoloctex E100#100#100#100#100#100#100#100#2 \(10\uparrow^8 (10\uparrow^8 100)\)
gaspgolduoctex E100#100#100#100#100#100#100#1#3 \(10\uparrow^8 (10\uparrow^8 (10\uparrow^7 100))\)
gaspgolheptexiduoctex E100#100#100#100#100#100#100#2#3 \(10\uparrow^8 (10\uparrow^8 (10\uparrow^7 (10\uparrow^7 100)))\)
gaspgolduheptexiduoctex E100#100#100#100#100#100#100#3#3 \(10\uparrow^8 (10\uparrow^8 (10\uparrow^7 (10\uparrow^7 (10\uparrow^7 100))))\)
ginorgolduoctex E100#100#100#100#100#100#100#100#3 \(10\uparrow^8 (10\uparrow^8 (10\uparrow^8 100))\)
ginorgolchime E1000#1000#1000#1000#

1000#1000#1000#1000

\(10\uparrow^8 1000\)
ginorgoloctexichime E1000#1000#1000#1000#

1000#1000#1000#1000#2

\(10\uparrow^8 (10\uparrow^8 1000)\)
ginorgolduoctexichime E1000#1000#1000#1000#

1000#1000#1000#1000#3

\(10\uparrow^8 (10\uparrow^8 (10\uparrow^8 1000))\)
ginorgoltoll E10,000#10,000#10,000#

10,000#10,000#10,000#10,000#10,000

\(10\uparrow^8 10^4\)
ginorgoloctexitoll E10,000#10,000#10,000#10,000#

10,000#10,000#10,000#10,000#2

\(10\uparrow^8 (10\uparrow^8 10^4)\)
ginorgolduoctexitoll E10,000#10,000#10,000#10,000#

10,000#10,000#10,000#10,000#3

\(10\uparrow^8 (10\uparrow^8 (10\uparrow^8 10^4))\)
ginorgolgong E100,000#100,000#100,000#100,000#

100,000#100,000#100,000#100,000

\(10\uparrow^8 10^5\)
ginorgoloctexigong E100,000#100,000#100,000#100,000#

100,000#100,000#100,000#100,000#2

\(10\uparrow^8 (10\uparrow^8 10^5)\)
ginorgolduoctexigong E100,000#100,000#100,000#100,000#

100,000#100,000#100,000#100,000#3

\(10\uparrow^8 (10\uparrow^8 (10\uparrow^8 10^5))\)
ginorgolbong E100,000,000#100,000,000# ...

100,000,000#100,000,000 w/8 100,000,000s

\(10\uparrow^8 10^8\)
ginorgoloctexibong E100,000,000#100,000,000# ...

100,000,000#100,000,000#2 w/8 100,000,000s

\(10\uparrow^8 (10\uparrow^8 10^8)\)
ginorgolthrong E100,000,000,000#100,000,000,000# ...

100,000,000,000#100,000,000,000 w/8 100,000,000,000s

\(10\uparrow^8 10^{11}\)
ginorgoloctexithrong E100,000,000,000#100,000,000,000# ...

100,000,000,000#100,000,000,000#2 w/8 100,000,000,000s

\(10\uparrow^8 (10\uparrow^8 10^{11})\)
googoloctex E100#1#1#1#1#1#1#1#2 \(10\uparrow^8 10^{100}\)
grangoloctex E100#100#1#1#1#1#1#1#2 \(10\uparrow^8 (10\uparrow^2 100)\)
greagoloctex E100#100#100#1#1#1#1#1#2 \(10\uparrow^8 (10\uparrow^3 100)\)
gigangoloctex E100#100#100#100#1#1#1#1#2 \(10\uparrow^8 (10\uparrow^4 100)\)
gorgegoloctex E100#100#100#100#100#1#1#1#2 \(10\uparrow^8 (10\uparrow^5 100)\)
gulgoloctex E100#100#100#100#100#100#1#1#2 \(10\uparrow^8 (10\uparrow^6 100)\)
ginorgolplex E(E100#100#100#100#100#100#100#100) \(10\uparrow (10\uparrow^8 100)\)
ginorgoldex E100#(E100#100#100#100#100#100#100#100) \(10\uparrow^2 (10\uparrow^8 100)\)
ginorgolthrex E100#100#(E100#100#100#100#100#100#100#100) \(10\uparrow^3 (10\uparrow^8 100)\)
ginorgoltetrex E100#100#100#

(E100#100#100#100#100#100#100#100)

\(10\uparrow^4 (10\uparrow^8 100)\)
ginorgolpentex E100#100#100#100#

(E100#100#100#100#100#100#100#100)

\(10\uparrow^5 (10\uparrow^8 100)\)
ginorgolhex E100#100#100#100#100#

(E100#100#100#100#100#100#100#100)

\(10\uparrow^6 (10\uparrow^8 100)\)
ginorgolheptex E100#100#100#100#100#100#

(E100#100#100#100#100#100#100#100) = E100#100#100#100#100#100#100#101

\(10\uparrow^7 (10\uparrow^8 100)\)
ecetonoctex E303#1#1#1#1#1#1#1#2 \(10\uparrow^8 (10^{303})\)
ecetonduoctex E303#1#1#1#1#1#1#1#3 \(10\uparrow^8 (10\uparrow^8 (10^{303}))\)
tria-dekaxis E1#1#1#1#1#1#1#1#3 \(10\uparrow^9 3\)
tetra-dekaxis E1#1#1#1#1#1#1#1#4 \(10\uparrow^9 4\)
deka-dekaxis E1#1#1#1#1#1#1#1#10 \(10\uparrow^9 10\)
hecta-dekaxis E1#1#1#1#1#1#1#1#100 \(10\uparrow^9 100\)
chilia-dekaxis E1#1#1#1#1#1#1#1#1000 \(10\uparrow^9 1000\)
myria-dekaxis E1#1#1#1#1#1#1#1#10,000 \(10\uparrow^9 10000\)

## Etymology

Parts of names Meaning
tria 3
tetra 4
penta 5
hexa 6
hepta 7
octa 8
enna 9
deka 10
hecta 100
chilia 1000
myria 10000
ding multiply the base value by 5
chime multiply the base value by 10
bell multiply the base value by 50
toll multiply the base value by 100
gong multiply the base value by 1000
bong multiply the base value by \(10^6\)
throng multiply the base value by \(10^9\)
gandingan multiply the base value by \(10^{12}\)

## Sources

1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers