## FANDOM

9,739 Pages

The gorgegol regiment is a series of numbers from E100#100#100#100#100 to E1#1#1#1#1#10,000 defined using Hyper-E Notation (i.e. beginning from gorgegol and up to myria-eptaxis).[1] The numbers were coined by Sbiis Saibian.

 Previous regiment Next regiment Gigangol regiment Gulgol regiment

## List of numbers of the regiment Edit

 Name of number Hyper-E Notation (exact equality) Arrow notation (approximation) gorgegol E100#100#100#100#100 \(10\uparrow^5 100\) gigangolpentex E100#100#100#100#1#2 \(10\uparrow^5 (10\uparrow^4 100)\) gigangoltetrexipentex E100#100#100#100#2#2 \(10\uparrow^5 (10\uparrow^4 (10\uparrow^4 100))\) gigangoldutetrexipentex E100#100#100#100#3#2 \(10\uparrow^5 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100)))\) gorgegolpentex E100#100#100#100#100#2 \(10\uparrow^5 (10\uparrow^5 100)\) gigangoldupentex E100#100#100#100#1#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^4 100))\) gigangoltetrexidupentex E100#100#100#100#2#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^4 (10\uparrow^4 100)))\) gigangoldutetrexidupentex E100#100#100#100#3#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100))))\) gorgegoldupentex E100#100#100#100#100#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 100))\) gigangoltripentex E100#100#100#100#1#4 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^4 100)))\) gigangoltetrexitripentex E100#100#100#100#2#4 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^4 (10\uparrow^4 100))))\) gigangoldutetrexitripentex E100#100#100#100#3#4 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^4 (10\uparrow^4 (10\uparrow^4 100)))))\) gorgegoltripentex E100#100#100#100#100#4 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 100)))\) gorgegolquadripentex E100#100#100#100#100#5 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 100))))\) gorgegolquintipentex E100#100#100#100#100#6 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 100)))))\) gorgegolchime E1000#1000#1000#1000#1000 \(10\uparrow^5 1000\) gorgegolpentexichime E1000#1000#1000#1000#1000#2 \(10\uparrow^5 (10\uparrow^5 1000)\) gorgegoldupentexichime E1000#1000#1000#1000#1000#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 1000))\) gorgegoltoll E10,000#10,000#10,000#10,000#10,000 \(10\uparrow^5 10000\) gorgegolpentexitoll E10,000#10,000#10,000#10,000#10,000#2 \(10\uparrow^5 (10\uparrow^5 10000)\) gorgegoldupentexitoll E10,000#10,000#10,000#10,000#10,000#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10000))\) gorgegolgong E100,000#100,000#100,000#100,000#100,000 \(10\uparrow^5 10^5\) gorgegolpentexigong E100,000#100,000#100,000#100,000#100,000#2 \(10\uparrow^5 (10\uparrow^5 10^5)\) gorgegoldupentexigong E100,000#100,000#100,000#100,000#100,000#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10^5))\) gorgegolbong E100,000,000#100,000,000#100,000,000# 100,000,000#100,000,000 \(10\uparrow^5 10^8\) gorgegolpentexibong E100,000,000#100,000,000#100,000,000# 100,000,000#100,000,000#2 \(10\uparrow^5 (10\uparrow^5 10^8)\) gorgegoldupentexibong E100,000,000#100,000,000#100,000,000# 100,000,000#100,000,000#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10^8))\) gorgegolthrong E100,000,000,000#100,000,000,000#100,000,000,000# 100,000,000,000#100,000,000,000 \(10\uparrow^5 10^{11}\) gorgegolpentexithrong E100,000,000,000#100,000,000,000#100,000,000,000# 100,000,000,000#100,000,000,000#2 \(10\uparrow^5 (10\uparrow^5 10^{11})\) gorgegoldupentexithrong E100,000,000,000#100,000,000,000#100,000,000,000# 100,000,000,000#100,000,000,000#3 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10^{11}))\) gigolchime E1#1#1#1#1000 \(10\uparrow^5 1000\) gigoltoll E1#1#1#1#10,000 \(10\uparrow^5 10000\) gigolgong E1#1#1#1#100,000 \(10\uparrow^5 10^5\) gigolbong E1#1#1#1#100,000,000 \(10\uparrow^5 10^8\) gigolthrong E1#1#1#1#100,000,000,000 \(10\uparrow^5 10^{11}\) googolpentex E100#1#1#1#1#2 \(10\uparrow^5 10^{100}\) grangolpentex E100#100#1#1#1#2 \(10\uparrow^5 (10\uparrow^2 100)\) greagolpentex E100#100#100#1#1#2 \(10\uparrow^5 (10\uparrow^3 100)\) gorgegolplex E(E100#100#100#100#100) \(10\uparrow (10\uparrow^5 100)\) gorgegoldex E100#(E100#100#100#100#100) \(10\uparrow^2 (10\uparrow^5 100)\) gorgegolthrex E100#100#(E100#100#100#100#100) \(10\uparrow^3 (10\uparrow^5 100)\) gorgegoltetrex E100#100#100#(E100#100#100#100#100) \(10\uparrow^4 (10\uparrow^5 100)\) ecetonpentex E303#1#1#1#1#2 \(10\uparrow^5 10^{303}\) ecetondupentex E303#1#1#1#1#3 \(10\uparrow^5 (10\uparrow^5 10^{303})\) ecetontripentex E303#1#1#1#1#4 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10^{303}))\) ecetonquadripentex E303#1#1#1#1#5 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10^{303})))\) ecetonquintipentex E303#1#1#1#1#6 \(10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 (10\uparrow^5 10^{303}))))\) tria-eptaxis E1#1#1#1#1#3 \(10\uparrow^6 3\) tetra-eptaxis E1#1#1#1#1#4 \(10\uparrow^6 4\) deka-eptaxis E1#1#1#1#1#10 \(10\uparrow^6 10\) hecta-eptaxis E1#1#1#1#1#100 \(10\uparrow^6 100\) chilia-eptaxis E1#1#1#1#1#1000 \(10\uparrow^6 1000\) myria-eptaxis E1#1#1#1#1#10,000 \(10\uparrow^6 10000\)

## Etymology Edit

 Parts of names Meaning tria 3 tetra 4 penta 5 hexa 6 hepta 7 octa 8 enna 9 deka 10 hecta 100 chilia 1000 myria 10000 ding multiply the base value by 5 chime multiply the base value by 10 bell multiply the base value by 50 toll multiply the base value by 100 gong multiply the base value by 1000 bong multiply the base value by \(10^6\) throng multiply the base value by \(10^9\) gandingan multiply the base value by \(10^{12}\)

## Sources Edit

1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers