FANDOM


The grangol regiment is a series of numbers from E100#100 to E1#1#100#3 defined using Hyper-E Notation (i.e. beginning from grangol and up to hectataxiataxia-taxis).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Guppy regiment Greagol regiment

List of numbers of the regiment

Name of number Hyper-E Notation (definition) Scientific notation or Arrow notation (exact value) Slow-growing hierarchy Pronunciation
grangolbit E[2]100#100 \(\underbrace{2^{...^{2^{100}}}}_{100\quad 2's}\) \(g_{\varepsilon_\omega}(10)\)
P-Grangolbit
grangolbyte E[8]100#100 \(\underbrace{8^{...^{8^{100}}}}_{100\quad 8's}\) \(g_{\varepsilon_\omega}(10)\)
P-Grangolbyte
grangol E100#100 \(\underbrace{10^{...^{10^{100}}}}_{100\quad 10's}\) \(g_{\varepsilon_\omega}(10)\)
P-Grangol
grangolplex E(E100#100) = E100#101 \(\underbrace{10^{...^{10^{100}}}}_{101\quad 10's}\) \(g_{\varepsilon_\omega^{\varepsilon_\omega}}(10)\)
P-Grangolplex
giggolchime E1#1,000 \(10\uparrow^2 10^{3}\) \(g_{\varepsilon_{\omega^2}}(10)\)
P-Giggolchime
grangolchime E1,000#1,000 \(\underbrace{10^{...^{10^{1,000}}}}_{1,000\quad 10's}\) \(g_{\varepsilon_{\omega^2}}(10)\)
P-Grangolchime
giggoltoll E1#10,000 \(10\uparrow^2 10^{4}\) \(g_{\varepsilon_{\omega^3}}(10)\)
P-Giggoltoll
grangoltoll E10,000#10,000 \(\underbrace{10^{...^{10^{10^4}}}}_{10^4+1\quad 10's}\) \(g_{\varepsilon_{\omega^3}}(10)\)
P-Grangoltoll
giggolgong E1#100,000 \(10\uparrow^2 10^{5}\) \(g_{\varepsilon_{\omega^4}}(10)\)
P-Giggolgong
grangolgong E100,000#100,000 \(\underbrace{10^{...^{10^{10^5}}}}_{10^5+1\quad 10's}\) \(g_{\varepsilon_{\omega^4}}(10)\)
P-Grangolgong
giggolbong E1#100,000,000 \(10\uparrow^2 10^{8}\) \(g_{\varepsilon_{\omega^7}}(10)\)
P-Giggolbong
grangolbong E100,000,000#100,000,000 \(\underbrace{10^{...^{10^{10^8}}}}_{10^8+1\quad 10's}\) \(g_{\varepsilon_{\omega^7}}(10)\)
P-Grangolbong
dialogialogue E1#(10^10) \(10\uparrow^2 10^{10}\) \(g_{\varepsilon_{\omega^\omega}}(10)\)
P-Dialogialogue
giggolthrong E1#100,000,000,000 \(10\uparrow^2 10^{11}\) \(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
P-Giggolthrong
grangolthrong E100,000,000,000#100,000,000,000 \(\underbrace{10^{...^{10^{10^{11}}}}}_{10^{11}+1\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
P-Grangolthrong
guppylogue E1#(10^20) \(10\uparrow^2 10^{20}\) \(g_{\varepsilon_{\omega^{\omega\times2}}}(10)\)
P-Guppylogue
minnowlogue E1#(10^25) \(10\uparrow^2 10^{25}\) \(g_{\varepsilon_{\omega^{\omega\times2+5}}}(10)\)
P-Minnowlogue
gobylogue E1#(10^35) \(10\uparrow^2 10^{35}\) \(g_{\varepsilon_{\omega^{\omega\times3+5}}}(10)\)
P-Gobylogue
gogologue E1#(10^50) \(10\uparrow^2 10^{50}\) \(g_{\varepsilon_{\omega^{\omega\times5}}}(10)\)
P-Gogologue
ogologue E1#(10^80) \(10\uparrow^2 10^{80}\) \(g_{\varepsilon_{\omega^{\omega\times8}}}(10)\)
P-Ogologue
googologue E1#(10^100) \(10\uparrow^2 10^{100}\) \(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
P-Googologue
googoldex E100#1#2 = E100#(E100) = E100#googol \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
P-Googoldex
googoldexiplex E(E100#1#2) = E(E100#(E100)) = E(E100#googol) = E100#(googol+1) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+1\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2}+1}}(10)\)
P-Googoldexiplex
googoldexiduplex E(E100#1#2)#2 = E(E100#googol)#2 = E100#(googol+2) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+2\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2}+2}}(10)\)
P-Googoldexiduplex
ecetondex E303#1#2 = E303#(E303) \(\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^2\times3+3}}}(10)\)
P-Ecetondex
trialogialogue E1#(10^10^10) \(10\uparrow^2 10\uparrow^2 3\) \(g_{\varepsilon_{\omega^{\omega^{\omega}}}}(10)\)
P-Trialogialogue
googolplexilogue E1#(10^10^100) \(10\uparrow^2 10^{10^{100}}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
P-Googolplexilogue
googolplexidex E100#2#2 = E100#(E100#2) = E100#googolplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
P-Googolplexidex
googolplexidexiplex E100#(1+E100#2) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+1\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+1}}(10)\)
P-Googolplexidexiplex
googolplexidexiduplex E100#(2+E100#2) \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+2\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+2}}(10)\)
P-Googolplexidexiduplex
tetralogialogue E1#(10^10^10^10) \(10\uparrow^2 10\uparrow^2 4\) \(g_{\varepsilon_{\omega^{\omega^{\omega^\omega}}}}(10)\)
P-Tetralogialogue
googolduplexilogue E1#(10^10^10^100) \(10\uparrow^2 10^{10^{10^{100}}}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
P-Googolduplexilogue
googolduplexidex E100#3#2 = E100#(E100#3) = E100#googolduplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}\) \(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
P-Googolduplexidex
pentalogialogue E1#(10^10^10^10^10) \(10\uparrow^2 10\uparrow^2 5\) \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
P-Pentalogialogue
googoltriplexilogue E1#(10^10^10^10^100) \(10\uparrow^2 10^{10^{10^{10^{100}}}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
P-Googoltriplexilogue
googoltriplexidex E100#4#2 = E100#(E100#4) = E100#googoltriplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
P-Googoltriplexidex
hexalogialogue E1#(E1#6) = E1#6#2 \(10\uparrow^2 10\uparrow^2 6\) \(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
P-Hexalogialogue
googolquadriplexidex E100#5#2 = E100#(E100#5) = E100#googolquadriplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
P-Googolquadriplexidex
heptalogialogue E1#7#2 \(10\uparrow^2 10\uparrow^2 7\) \(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
P-Heptalogialogue
googolquintiplexidex E100#6#2 = E100#(E100#6) = E100#googolquintiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
P-Googolquintiplexidex
octalogialogue E1#8#2 \(10\uparrow^2 10\uparrow^2 8\) \(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
P-Octalogialogue
googolsextiplexidex E100#7#2 = E100#(E100#7) = E100#googolsextiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
P-Googolsextiplexidex
ennalogialogue E1#9#2 = 10^^10^^9 \(10\uparrow^2 10\uparrow^2 9\) \(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
P-Ennalogialogue
googolseptiplexidex E100#8#2 = E100#(E100#8) = E100#googolseptiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}\) \(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
P-Googolseptiplexidex
dekalogialogue, tria-taxis E1#10#2 \(10\uparrow^2 10\uparrow^2 10\) \(g_{\varepsilon_{\varepsilon_0}}(10)\)
P-Dekalogialogue
googoloctiplexidex E100#9#2 = E100#(E100#9) = E100#googoloctiplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_0}}(10)\)
P-Googoloctiplexidex
googolnoniplexidex E100#10#2 = E100#(E100#10) = E100#googolnoniplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_1}}(10)\)
P-Googolnoniplexidex
googoldeciplexidex E100#11#2 = E100#(E100#11) = E100#googoldeciplex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_2}}(10)\)
P-Googoldeciplexidex
hectalogialogue E1#100#2 \(10\uparrow^2 10\uparrow^2 100\) \(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
P-Giggolplex
grangoldex E100#100#2 = E100#(E100#100) = E100#grangol \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
P-Grangoldex
chilialogialogue E1#1000#2 \(10\uparrow^2 10\uparrow^2 1000\) \(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
P-Chilialogialogue
grangoldexichime E1000#1000#2 \(\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
P-Grangoldexichime
myrialogialogue E1#10,000#2 \(10\uparrow^2 10\uparrow^2 10000\) \(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
P-Myrialogialogue
grangoldexitoll E10,000#10,000#2 \(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
P-Grangoldexitoll
grangoldexigong E100,000#100,000#2 = E100,000#grangolgong \(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^4}}}(10)\)
P-Grangoldexigong
octadialogialogue E1#100,000,000#2 = 10^^10^^100,000,000 \(10\uparrow^2 10\uparrow^2 10^8\) \(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
P-Octadialogialogue
grangoldexibong E100,000,000#100,000,000#2 \(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
P-Grangoldexibong
grangoldexithrong E100,000,000,000#100,000,000,000#2 \(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}(10)\)
P-Grangoldexithrong
sedeniadialogialogue E1#(10^16)#2 \(10\uparrow^2 10\uparrow^2 10^{16}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}(10)\)
P-Sedeniadialogialogue
googoldudex E100#1#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}(10)\)
P-Googoldudex
ecetondudex E303#1#3 = E303#ecetondex \(\underbrace{10^{...^{10^{10^{303}}}}}_{\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3+3}}}}(10)\)
P-Ecetondudex
trialogialogialogue E1#3#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 3\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega}}}}}(10)\)
P-Trialogialogialogue
googolplexidudex E100#2#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}(10)\)
P-Googolplexidudex
tetralogialogialogue E1#4#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 4\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
P-Tetralogialogialogue
googolduplexidudex E100#3#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
P-Googolduplexidudex
pentalogialogialogue E1#5#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 5\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
P-Pentalogialogialogue
googoltriplexidudex E100#4#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
P-Googoltriplexidudex
hexalogialogialogue E1#6#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 6\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
P-Hexalogialogialogue
googolquadriplexidudex E100#5#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
P-Googolquadriplexidudex
heptalogialogialogue E1#7#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 7\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
P-Heptalogialogialogue
googolquintiplexidudex E100#6#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
P-Googolquintiplexidudex
octalogialogialogue E1#8#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 8\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
P-Octalogialogialogue
googolsextiplexidudex E100#7#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
Googolsextiplexidudex
ennalogialogialogue E1#9#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 9\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
P-Ennalogialogialogue
googolseptiplexidudex E100#8#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
dekalogialogialogue, tetra-taxis E1#10#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
googoloctiplexidudex E100#9#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
googolnoniplexidudex E100#10#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_1}}}(10)\)
googoldeciplexidudex E100#11#3 \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_2}}}(10)\)
hectalogialogialogue E1#100#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 100\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
grangoldudex E100#100#3 = E100#(E100#100#2) = E100#grangoldex \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
chilialogialogialogue E1#1,000#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 1000\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
grangoldudexichime E1,000#1,000#3 \(\underbrace{10^{...^{10^{10^{1,000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
myrialogialogialogue E1#10,000#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10000\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
grangoldudexitoll E10,000#10,000#3 \(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
grangoldudexigong E100,000#100,000#3 = E100,000#grangoldexigong \(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^4}}}}(10)\)
octadialogialogialogue E1#100,000,000#3 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^8\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
grangoldudexibong E100,000,000#100,000,000#3 \(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
grangoldudexithrong E100,000,000,000#100,000,000,000#3 \(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}+1}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}}(10)\)
sedeniadialogialogialogue E1#(10^16)#3 = 10^^10^^10^^10^16 \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^{16}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}}(10)\)
googoltridex E100#1#4 \(10\uparrow^3 4\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}}(10)\)
ecetontridex E303#1#4 = E303#ecetondudex \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{4 layers}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3}}}}}(10)\)
googolplexitridex E100#2#4 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{4 layers}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}}(10)\)
googolduplexitridex E100#3#4 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{4 layers}\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}}}(10)\)
penta-taxis E1#1#5 = E1#(E1#(E1#(E1#10))) = E1#tetra-taxis \(10\uparrow^3 5\) \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}}(10)\)
grangoltridex E100#100#4 = E100#(E100#100#3) = E100#grangoldudex \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100} } } } \\ 100\quad 10's \end{matrix} \right \} \text{5 layers}\)
grangoltridexichime E1000#1000#4 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000} } } } \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000} } } } \\ 1000\quad 10's \end{matrix} \right \} \text{5 layers}\)
grangoltridexitoll E10,000#10,000#4 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{5 layers}\)
grangoltridexigong E100,000#100,000#4 = E100,000#grangoldudexigong \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000} } } } \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{5 layers}\)
googolquadridex E100#1#5 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100} } } } \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100} } } } \\ 10^{100}\quad 10's \end{matrix} \right \} \text{5 layers}\)
ecetonquadridex E303#1#5 = E303#ecetontridex \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{5 layers}\)
googolplexiquadridex E100#2#5 \(\left.\begin{matrix} \underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{5 layers}\)
googolduplexiquadridex E100#3#5 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{5 layers}\)
hexa-taxis E1#1#6 = E1#(E1#(E1#(E1#(E1#10)))) = E1#penta-taxis \(10\uparrow^3 6\)
grangolquadridex E100#100#5 = E100#(E100#100#4) = E100#grangoltridex \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{6 layers}\)
grangolquadridexichime E1000#1000#5 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{6 layers}\)
grangolquadridexitoll E10,000#10,000#5 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{6 layers}\)
grangolquadridexigong E100,000#100,000#5 = E100,000#grangoltridexigong \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{6 layers}\)
googolquintidex E100#1#6 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{6 layers}\)
ecetonquintidex E303#1#6 = E303#ecetonquadridex \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{6 layers}\)
googolplexiquintidex E100#2#6 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{6 layers}\)
googolduplexiquintidex E100#3#6 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{6 layers}\)
hepta-taxis E1#1#7 = E1#hexa-taxis \(10\uparrow^3 7\)
grangolquintidex E100#100#6 = E100#(E100#100#5) = E100#grangolquadridex \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{7 layers}\)
grangolquintidexichime E1000#1000#6 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{7 layers}\)
grangolquintidexitoll E10,000#10,000#6 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{7 layers}\)
grangolquintidexigong E100,000#100,000#6 = E100,000#grangolquadridexigong \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{7 layers}\)
googolsextidex E100#1#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{7 layers}\)
ecetonsextidex E303#1#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{7 layers}\)
googolplexisextidex E100#2#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{7 layers}\)
googolduplexisextidex E100#3#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{7 layers}\)
octa-taxis E1#1#8 = E1#hepta-taxis \(10\uparrow^3 8\)
grangolsextidex E100#100#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{8 layers}\)
grangolsextidexichime E1000#1000#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{8 layers}\)
grangolsextidexitoll E10,000#10,000#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{8 layers}\)
grangolsextidexigong E100,000#100,000#7 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{8 layers}\)
googolseptidex E100#1#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{8 layers}\)
ecetonseptidex E303#1#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{8 layers}\)
googolplexiseptidex E100#2#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{8 layers}\)
googolduplexiseptidex E100#3#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{8 layers}\)
enna-taxis E1#1#9 = E1#octa-taxis \(10\uparrow^3 9\)
grangolseptidex E100#100#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{9 layers}\)
grangolseptidexichime E1000#1000#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{9 layers}\)
grangolseptidexitoll E10,000#10,000#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's\end{matrix}\right \} \text{9 layers}\)
grangolseptidexigong E100,000#100,000#8 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{9 layers}\)
googoloctidex E100#1#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{9 layers}\)
ecetonoctidex E303#1#9 \(\left.\begin{matrix} \underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{9 layers}\)
googolplexioctidex E100#2#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{9 layers}\)
googolduplexioctidex E100#3#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{9 layers}\)
deka-taxis E1#1#10 = E1#enna-taxis \(10\uparrow^3 10\)
grangoloctidex E100#100#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{10 layers}\)
grangoloctidexichime E1000#1000#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{10 layers}\)
grangoloctidexitoll E10,000#10,000#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{10 layers}\)
grangoloctidexigong E100,000#100,000#9 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{10 layers}\)
googolnonidex E100#1#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix}\right \} \text{10 layers}\)
ecetonnonidex E303#1#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{10 layers}\)
googolplexinonidex E100#2#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix}\right \} \text{10 layers}\)
googolduplexinonidex E100#3#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's\end{matrix}\right \} \text{10 layers}\)
grangolnonidex E100#100#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix}\right \} \text{11 layers}\)
grangolnonidexichime E1000#1000#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{11 layers}\)
grangolnonidexitoll E10,000#10,000#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{11 layers}\)
grangolnonidexigong E100,000#100,000#10 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix}\right \} \text{11 layers}\)
googoldecidex E100#1#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{11 layers}\)
ecetondecidex E303#1#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{11 layers}\)
googolplexidecidex E100#2#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{11 layers}\)
googolduplexidecidex E100#3#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{11 layers}\)
grangoldecidex E100#100#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{12 layers}\)
grangoldecidexichime E1000#1000#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{12 layers}\)
grangoldecidexitoll E10,000#10,000#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{12 layers}\)
grangoldecidexigong E100,000#100,000#11 \(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{12 layers}\)
hecta-taxis E1#1#100 \(10\uparrow^3 100\)
chilia-taxis E1#1#1000 \(10\uparrow^3 1000\)
myria-taxis E1#1#10,000 \(10\uparrow^3 10000\)
chilia-chilia-taxis E1#1#1,000,000 \(10\uparrow^3 1000000\)
chilia-myria-taxis E1#1#10,000,000 \(10\uparrow^3 10000000\)
myria-myria-taxis E1#1#100,000,000 \(10\uparrow^3 100000000\)
sedeniadia-taxis E1#1#(10^16) \(10\uparrow^3 10^{16}\)
googolia-taxis E1#1#(10^100) \(10\uparrow^3 10^{100}\)
trialogia-taxis E1#1#(10^10^10) \(10\uparrow^3 10^{10^{10}}\)
googolplexia-taxis E1#1#(10^10^100) \(10\uparrow^3 10^{10^{100}}\)
tetralogia-taxis E1#1#(10^10^10^10) \(10\uparrow^3 10^{10^{10^{10}}}\)
googolduplexia-taxis E1#1#(10^10^10^100) \(10\uparrow^3 10^{10^{10^{100}}}\)
pentalogia-taxis E1#1#(10^10^10^10^10) \(10\uparrow^3 10^{10^{10^{10^{10}}}}\)
googoltriplexia-taxis E1#1#(10^10^10^10^100) \(10\uparrow^3 10^{10^{10^{10^{100}}}}\)
hexalogia-taxis E1#1#(E1#6) = 10^^^10^^6 \(10\uparrow^3 10\uparrow^2 6\)
heptalogia-taxis E1#1#(E1#7) = 10^^^10^^7 \(10\uparrow^3 10\uparrow^2 7\)
octalogia-taxis E1#1#(E1#8) = 10^^^10^^8 \(10\uparrow^3 10\uparrow^2 8\)
ennalogia-taxis E1#1#(E1#9) = 10^^^10^^9 \(10\uparrow^3 10\uparrow^2 9\)
dekalogia-taxis E1#1#(E1#10) = 10^^^10^^10 = 10^^^10^^^2 \(10\uparrow^3 10\uparrow^3 2\)
triataxia-taxis E1#1#(E1#1#3) = E1#1#3#2 = 10^^^10^^^3 \(10\uparrow^3 10\uparrow^3 3\)
dekataxia-taxis E1#1#10#2 = E1#1#1#3 = 10^^^10^^^10 \(10\uparrow^3 10\uparrow^3 10\)
hectataxia-taxis E1#1#100#2 = 10^^^10^^^100 \(10\uparrow^3 10\uparrow^3 100\)
triataxiataxia-taxis E1#1#3#3 = 10^^^10^^^10^^^3 \(10\uparrow^3 10\uparrow^3 10\uparrow^3 3\)
dekataxiataxia-taxis E1#1#10#3 = E1#1#1#4 = 10^^^10^^^10^^^10 \(10\uparrow^3 10\uparrow^3 10\uparrow^3 10\)
hectataxiataxia-taxis E1#1#100#3 = 10^^^10^^^10^^^100 \(10\uparrow^3 10\uparrow^3 10\uparrow^3 100\)

Etymology

Parts of names Meaning
tria 3
tetra 4
penta 5
hexa 6
hepta 7
octa 8
enna 9
deka 10
hecta 100
chilia 1000
myria 10000
ding multiply the base value by 5
chime multiply the base value by 10
bell multiply the base value by 50
toll multiply the base value by 100
gong multiply the base value by 1000
bong multiply the base value by \(10^6\)
throng multiply the base value by \(10^9\)
gandingan multiply the base value by \(10^{12}\)

Sources

  1. Sbiis Saibian, 4.3.2 - Hyper-E Numbers
Saibian's regiments

Hyper-E regiments: Guppy regiment · Grangol regiment · Greagol regiment · Gigangol regiment · Gorgegol regiment · Gulgol regiment · Gaspgol regiment · Ginorgol regiment · Gargantuul regiment · Googondol regiment
Extended Hyper-E regiments: Gugold regiment · Graatagold regiment · Greegold regiment · Grinningold regiment · Golaagold regiment · Gruelohgold regiment · Gaspgold regiment · Ginorgold regiment · Gargantuuld regiment · Googondold regiment · Gugolthra regiment · Throogol regiment · Tetroogol regiment · Pentoogol regiment · Hexoogol regiment · Heptoogol regiment · Ogdoogol regiment · Entoogol regiment · Dektoogol regiment
Cascading-E regiments: Godgahlah regiment · Gridgahlah regiment · Kubikahlah regiment · Quarticahlah regiment · Quinticahlah regiment · Sexticahlah regiment · Septicahlah regiment · Octicahlah regiment · Nonicahlah regiment · Decicahlah regiment · Godgathor regiment · Gralgathor regiment · Thraelgathor regiment · Terinngathor regiment · Pentaelgathor regiment · Hexaelgathor regiment · Heptaelgathor regiment · Octaelgathor regiment · Ennaelgathor regiment · Dekaelgathor regiment · Godtothol regiment · Godtertol regiment · Godtopol regiment · Godhathor regiment · Godheptol regiment · Godoctol regiment · Godentol regiment · Goddekathol regiment
Extended Cascading-E regiments: Tethrathoth regiment · Monster-Giant regiment · Tethriterator regiment · Tethracross regiment · Tethracubor regiment · Tethrateron regiment · Tethrapeton regiment · Tethrahexon regiment · Tethrahepton regiment · Tethra-ogdon regiment · Tethrennon regiment · Tethradekon regiment · Tethratope regiment · Pentacthulhum regiment · Pentacthulcross regiment · Pentacthulcubor regiment · Pentacthulteron regiment · Pentacthulpeton regiment · Pentacthulhexon regiment · Pentacthulhepton regiment · Pentacthul-ogdon regiment · Pentacthulennon regiment · Pentacthuldekon regiment · Pentacthultope regiment · Hexacthulhum super regiment · Heptacthulhum super regiment · Ogdacthulhum super regiment · Ennacthulhum super regiment · Dekacthulhum super regiment