Name of number
| Hyper-E Notation (definition)
| Scientific notation or Arrow notation (exact value)
| Slow-growing hierarchy
| Pronunciation
|
grangolbit
| E[2]100#100
| \(\underbrace{2^{...^{2^{100}}}}_{100\quad 2's}\)
| \(g_{\varepsilon_\omega}(10)\)
|
|
grangolbyte
| E[8]100#100
| \(\underbrace{8^{...^{8^{100}}}}_{100\quad 8's}\)
| \(g_{\varepsilon_\omega}(10)\)
|
|
grangol
| E100#100
| \(\underbrace{10^{...^{10^{100}}}}_{100\quad 10's}\)
| \(g_{\varepsilon_\omega}(10)\)
|
|
grangolplex
| E(E100#100) = E100#101
| \(\underbrace{10^{...^{10^{100}}}}_{101\quad 10's}\)
| \(g_{\varepsilon_\omega^{\varepsilon_\omega}}(10)\)
|
|
giggolchime
| E1#1,000
| \(10\uparrow^2 10^{3}\)
| \(g_{\varepsilon_{\omega^2}}(10)\)
|
|
grangolchime
| E1,000#1,000
| \(\underbrace{10^{...^{10^{1,000}}}}_{1,000\quad 10's}\)
| \(g_{\varepsilon_{\omega^2}}(10)\)
|
|
giggoltoll
| E1#10,000
| \(10\uparrow^2 10^{4}\)
| \(g_{\varepsilon_{\omega^3}}(10)\)
|
|
grangoltoll
| E10,000#10,000
| \(\underbrace{10^{...^{10^{10^4}}}}_{10^4+1\quad 10's}\)
| \(g_{\varepsilon_{\omega^3}}(10)\)
|
|
giggolgong
| E1#100,000
| \(10\uparrow^2 10^{5}\)
| \(g_{\varepsilon_{\omega^4}}(10)\)
|
|
grangolgong
| E100,000#100,000
| \(\underbrace{10^{...^{10^{10^5}}}}_{10^5+1\quad 10's}\)
| \(g_{\varepsilon_{\omega^4}}(10)\)
|
|
giggolbong
| E1#100,000,000
| \(10\uparrow^2 10^{8}\)
| \(g_{\varepsilon_{\omega^7}}(10)\)
|
|
grangolbong
| E100,000,000#100,000,000
| \(\underbrace{10^{...^{10^{10^8}}}}_{10^8+1\quad 10's}\)
| \(g_{\varepsilon_{\omega^7}}(10)\)
|
|
dialogialogue
| E1#(10^10)
| \(10\uparrow^2 10^{10}\)
| \(g_{\varepsilon_{\omega^\omega}}(10)\)
|
|
giggolthrong
| E1#100,000,000,000
| \(10\uparrow^2 10^{11}\)
| \(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
|
|
grangolthrong
| E100,000,000,000#100,000,000,000
| \(\underbrace{10^{...^{10^{10^{11}}}}}_{10^{11}+1\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
|
|
guppylogue
| E1#(10^20)
| \(10\uparrow^2 10^{20}\)
| \(g_{\varepsilon_{\omega^{\omega\times2}}}(10)\)
|
|
minnowlogue
| E1#(10^25)
| \(10\uparrow^2 10^{25}\)
| \(g_{\varepsilon_{\omega^{\omega\times2+5}}}(10)\)
|
|
gobylogue
| E1#(10^35)
| \(10\uparrow^2 10^{35}\)
| \(g_{\varepsilon_{\omega^{\omega\times3+5}}}(10)\)
|
|
gogologue
| E1#(10^50)
| \(10\uparrow^2 10^{50}\)
| \(g_{\varepsilon_{\omega^{\omega\times5}}}(10)\)
|
|
ogologue
| E1#(10^80)
| \(10\uparrow^2 10^{80}\)
| \(g_{\varepsilon_{\omega^{\omega\times8}}}(10)\)
|
|
googologue
| E1#(10^100)
| \(10\uparrow^2 10^{100}\)
| \(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
|
|
googoldex
| E100#1#2 = E100#(E100) = E100#googol
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
|
|
googoldexiplex
| E(E100#1#2) = E(E100#(E100)) = E(E100#googol) = E100#(googol+1)
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+1\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^2}+1}}(10)\)
|
|
googoldexiduplex
| E(E100#1#2)#2 = E(E100#googol)#2 = E100#(googol+2)
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+2\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^2}+2}}(10)\)
|
|
ecetondex
| E303#1#2 = E303#(E303)
| \(\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^2\times3+3}}}(10)\)
|
|
trialogialogue
| E1#(10^10^10)
| \(10\uparrow^2 10\uparrow^2 3\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega}}}}(10)\)
|
|
googolplexilogue
| E1#(10^10^100)
| \(10\uparrow^2 10^{10^{100}}\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
|
|
googolplexidex
| E100#2#2 = E100#(E100#2) = E100#googolplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
|
|
googolplexidexiplex
| E100#(1+E100#2)
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+1\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+1}}(10)\)
|
|
googolplexidexiduplex
| E100#(2+E100#2)
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+2\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+2}}(10)\)
|
|
tetralogialogue
| E1#(10^10^10^10)
| \(10\uparrow^2 10\uparrow^2 4\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^\omega}}}}(10)\)
|
|
googolduplexilogue
| E1#(10^10^10^100)
| \(10\uparrow^2 10^{10^{10^{100}}}\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
|
|
googolduplexidex
| E100#3#2 = E100#(E100#3) = E100#googolduplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}\)
| \(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
|
|
pentalogialogue
| E1#(10^10^10^10^10)
| \(10\uparrow^2 10\uparrow^2 5\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
|
|
googoltriplexilogue
| E1#(10^10^10^10^100)
| \(10\uparrow^2 10^{10^{10^{10^{100}}}}\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
|
|
googoltriplexidex
| E100#4#2 = E100#(E100#4) = E100#googoltriplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
|
|
hexalogialogue
| E1#(E1#6) = E1#6#2
| \(10\uparrow^2 10\uparrow^2 6\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
|
|
googolquadriplexidex
| E100#5#2 = E100#(E100#5) = E100#googolquadriplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
|
|
heptalogialogue
| E1#7#2
| \(10\uparrow^2 10\uparrow^2 7\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
|
|
googolquintiplexidex
| E100#6#2 = E100#(E100#6) = E100#googolquintiplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
|
|
octalogialogue
| E1#8#2
| \(10\uparrow^2 10\uparrow^2 8\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
|
|
googolsextiplexidex
| E100#7#2 = E100#(E100#7) = E100#googolsextiplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
|
|
ennalogialogue
| E1#9#2 = 10^^10^^9
| \(10\uparrow^2 10\uparrow^2 9\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
|
|
googolseptiplexidex
| E100#8#2 = E100#(E100#8) = E100#googolseptiplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}\)
| \(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
|
|
dekalogialogue, tria-taxis
| E1#10#2
| \(10\uparrow^2 10\uparrow^2 10\)
| \(g_{\varepsilon_{\varepsilon_0}}(10)\)
|
|
googoloctiplexidex
| E100#9#2 = E100#(E100#9) = E100#googoloctiplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_0}}(10)\)
|
|
googolnoniplexidex
| E100#10#2 = E100#(E100#10) = E100#googolnoniplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_1}}(10)\)
|
|
googoldeciplexidex
| E100#11#2 = E100#(E100#11) = E100#googoldeciplex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_2}}(10)\)
|
|
hectalogialogue
| E1#100#2
| \(10\uparrow^2 10\uparrow^2 100\)
| \(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
|
|
grangoldex
| E100#100#2 = E100#(E100#100) = E100#grangol
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
|
|
chilialogialogue
| E1#1000#2
| \(10\uparrow^2 10\uparrow^2 1000\)
| \(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
|
|
grangoldexichime
| E1000#1000#2
| \(\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
|
|
myrialogialogue
| E1#10,000#2
| \(10\uparrow^2 10\uparrow^2 10000\)
| \(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
|
|
grangoldexitoll
| E10,000#10,000#2
| \(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
|
|
grangoldexigong
| E100,000#100,000#2 = E100,000#grangolgong
| \(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^4}}}(10)\)
|
|
octadialogialogue
| E1#100,000,000#2 = 10^^10^^100,000,000
| \(10\uparrow^2 10\uparrow^2 10^8\)
| \(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
|
|
grangoldexibong
| E100,000,000#100,000,000#2
| \(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
|
|
grangoldexithrong
| E100,000,000,000#100,000,000,000#2
| \(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}(10)\)
|
|
sedeniadialogialogue
| E1#(10^16)#2
| \(10\uparrow^2 10\uparrow^2 10^{16}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}(10)\)
|
|
googoldudex
| E100#1#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}(10)\)
|
|
ecetondudex
| E303#1#3 = E303#ecetondex
| \(\underbrace{10^{...^{10^{10^{303}}}}}_{\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3+3}}}}(10)\)
|
|
trialogialogialogue
| E1#3#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 3\)
| \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega}}}}}(10)\)
|
|
googolplexidudex
| E100#2#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}(10)\)
|
|
tetralogialogialogue
| E1#4#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 4\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
|
|
googolduplexidudex
| E100#3#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
|
|
pentalogialogialogue
| E1#5#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 5\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
|
|
googoltriplexidudex
| E100#4#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
|
|
hexalogialogialogue
| E1#6#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 6\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
|
|
googolquadriplexidudex
| E100#5#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
|
|
heptalogialogialogue
| E1#7#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 7\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
|
|
googolquintiplexidudex
| E100#6#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
|
|
octalogialogialogue
| E1#8#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 8\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
|
|
googolsextiplexidudex
| E100#7#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
|
|
ennalogialogialogue
| E1#9#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 9\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
|
|
googolseptiplexidudex
| E100#8#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
|
dekalogialogialogue, tetra-taxis
| E1#10#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
|
googoloctiplexidudex
| E100#9#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
|
googolnoniplexidudex
| E100#10#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_1}}}(10)\)
|
googoldeciplexidudex
| E100#11#3
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_2}}}(10)\)
|
hectalogialogialogue
| E1#100#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 100\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
|
grangoldudex
| E100#100#3 = E100#(E100#100#2) = E100#grangoldex
| \(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
|
chilialogialogialogue
| E1#1,000#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 1000\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
|
grangoldudexichime
| E1,000#1,000#3
| \(\underbrace{10^{...^{10^{10^{1,000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
|
myrialogialogialogue
| E1#10,000#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10000\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
|
grangoldudexitoll
| E10,000#10,000#3
| \(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
|
grangoldudexigong
| E100,000#100,000#3 = E100,000#grangoldexigong
| \(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^4}}}}(10)\)
|
octadialogialogialogue
| E1#100,000,000#3
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^8\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
|
grangoldudexibong
| E100,000,000#100,000,000#3
| \(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
|
grangoldudexithrong
| E100,000,000,000#100,000,000,000#3
| \(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}+1}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}}(10)\)
|
sedeniadialogialogialogue
| E1#(10^16)#3 = 10^^10^^10^^10^16
| \(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^{16}\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}}(10)\)
|
googoltridex
| E100#1#4
| \(10\uparrow^3 4\)
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}}(10)\)
|
ecetontridex
| E303#1#4 = E303#ecetondudex
|
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3}}}}}(10)\)
|
googolplexitridex
| E100#2#4
|
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}}(10)\)
|
googolduplexitridex
| E100#3#4
|
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}}}(10)\)
|
penta-taxis
| E1#1#5 = E1#(E1#(E1#(E1#10))) = E1#tetra-taxis
|
| \(g_{\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}}(10)\)
|
grangoltridex
| E100#100#4 = E100#(E100#100#3) = E100#grangoldudex
|
|
|
grangoltridexichime
| E1000#1000#4
|
|
|
grangoltridexitoll
| E10,000#10,000#4
|
|
|
grangoltridexigong
| E100,000#100,000#4 = E100,000#grangoldudexigong
|
|
|
googolquadridex
| E100#1#5
|
|
|
ecetonquadridex
| E303#1#5 = E303#ecetontridex
|
|
|
googolplexiquadridex
| E100#2#5
|
|
|
googolduplexiquadridex
| E100#3#5
|
|
|
hexa-taxis
| E1#1#6 = E1#(E1#(E1#(E1#(E1#10)))) = E1#penta-taxis
|
|
|
grangolquadridex
| E100#100#5 = E100#(E100#100#4) = E100#grangoltridex
|
|
|
grangolquadridexichime
| E1000#1000#5
|
|
|
grangolquadridexitoll
| E10,000#10,000#5
|
|
|
grangolquadridexigong
| E100,000#100,000#5 = E100,000#grangoltridexigong
|
|
|
googolquintidex
| E100#1#6
|
|
|
ecetonquintidex
| E303#1#6 = E303#ecetonquadridex
|
|
|
googolplexiquintidex
| E100#2#6
|
|
|
googolduplexiquintidex
| E100#3#6
|
|
|
hepta-taxis
| E1#1#7 = E1#hexa-taxis
|
|
|
grangolquintidex
| E100#100#6 = E100#(E100#100#5) = E100#grangolquadridex
|
|
|
grangolquintidexichime
| E1000#1000#6
|
|
|
grangolquintidexitoll
| E10,000#10,000#6
|
|
|
grangolquintidexigong
| E100,000#100,000#6 = E100,000#grangolquadridexigong
|
|
|
googolsextidex
| E100#1#7
|
|
|
ecetonsextidex
| E303#1#7
|
|
|
googolplexisextidex
| E100#2#7
|
|
|
googolduplexisextidex
| E100#3#7
|
|
|
octa-taxis
| E1#1#8 = E1#hepta-taxis
|
|
|
grangolsextidex
| E100#100#7
|
|
|
grangolsextidexichime
| E1000#1000#7
|
|
|
grangolsextidexitoll
| E10,000#10,000#7
|
|
|
grangolsextidexigong
| E100,000#100,000#7
|
|
|
googolseptidex
| E100#1#8
|
|
|
ecetonseptidex
| E303#1#8
|
|
|
googolplexiseptidex
| E100#2#8
|
|
|
googolduplexiseptidex
| E100#3#8
|
|
|
enna-taxis
| E1#1#9 = E1#octa-taxis
|
|
|
grangolseptidex
| E100#100#8
|
|
|
grangolseptidexichime
| E1000#1000#8
|
|
|
grangolseptidexitoll
| E10,000#10,000#8
|
|
|
grangolseptidexigong
| E100,000#100,000#8
|
|
|
googoloctidex
| E100#1#9
|
|
|
ecetonoctidex
| E303#1#9
|
|
|
googolplexioctidex
| E100#2#9
|
|
|
googolduplexioctidex
| E100#3#9
|
|
|
deka-taxis
| E1#1#10 = E1#enna-taxis
|
|
|
grangoloctidex
| E100#100#9
|
|
|
grangoloctidexichime
| E1000#1000#9
|
|
|
grangoloctidexitoll
| E10,000#10,000#9
|
|
|
grangoloctidexigong
| E100,000#100,000#9
|
|
|
googolnonidex
| E100#1#10
|
|
|
ecetonnonidex
| E303#1#10
|
|
|
googolplexinonidex
| E100#2#10
|
|
|
googolduplexinonidex
| E100#3#10
|
|
|
grangolnonidex
| E100#100#10
|
|
|
grangolnonidexichime
| E1000#1000#10
|
|
|
grangolnonidexitoll
| E10,000#10,000#10
|
|
|
grangolnonidexigong
| E100,000#100,000#10
|
|
|
googoldecidex
| E100#1#11
|
|
|
ecetondecidex
| E303#1#11
|
|
|
googolplexidecidex
| E100#2#11
|
|
|
googolduplexidecidex
| E100#3#11
|
|
|
grangoldecidex
| E100#100#11
|
|
|
grangoldecidexichime
| E1000#1000#11
|
|
|
grangoldecidexitoll
| E10,000#10,000#11
|
|
|
grangoldecidexigong
| E100,000#100,000#11
|
|
|
hecta-taxis
| E1#1#100
| \(10\uparrow^3 100\)
|
|
chilia-taxis
| E1#1#1000
| \(10\uparrow^3 1000\)
|
|
myria-taxis
| E1#1#10,000
| \(10\uparrow^3 10000\)
|
|
chilia-chilia-taxis
| E1#1#1,000,000
| \(10\uparrow^3 1000000\)
|
|
chilia-myria-taxis
| E1#1#10,000,000
| \(10\uparrow^3 10000000\)
|
|
myria-myria-taxis
| E1#1#100,000,000
| \(10\uparrow^3 100000000\)
|
|
sedeniadia-taxis
| E1#1#(10^16)
| \(10\uparrow^3 10^{16}\)
|
|
googolia-taxis
| E1#1#(10^100)
| \(10\uparrow^3 10^{100}\)
|
|
trialogia-taxis
| E1#1#(10^10^10)
| \(10\uparrow^3 10^{10^{10}}\)
|
|
googolplexia-taxis
| E1#1#(10^10^100)
| \(10\uparrow^3 10^{10^{100}}\)
|
|
tetralogia-taxis
| E1#1#(10^10^10^10)
| \(10\uparrow^3 10^{10^{10^{10}}}\)
|
|
googolduplexia-taxis
| E1#1#(10^10^10^100)
| \(10\uparrow^3 10^{10^{10^{100}}}\)
|
|
pentalogia-taxis
| E1#1#(10^10^10^10^10)
| \(10\uparrow^3 10^{10^{10^{10^{10}}}}\)
|
|
googoltriplexia-taxis
| E1#1#(10^10^10^10^100)
| \(10\uparrow^3 10^{10^{10^{10^{100}}}}\)
|
|
hexalogia-taxis
| E1#1#(E1#6) = 10^^^10^^6
| \(10\uparrow^3 10\uparrow^2 6\)
|
|
heptalogia-taxis
| E1#1#(E1#7) = 10^^^10^^7
| \(10\uparrow^3 10\uparrow^2 7\)
|
|
octalogia-taxis
| E1#1#(E1#8) = 10^^^10^^8
| \(10\uparrow^3 10\uparrow^2 8\)
|
|
ennalogia-taxis
| E1#1#(E1#9) = 10^^^10^^9
| \(10\uparrow^3 10\uparrow^2 9\)
|
|
dekalogia-taxis
| E1#1#(E1#10) = 10^^^10^^10 = 10^^^10^^^2
| \(10\uparrow^3 10\uparrow^3 2\)
|
|
triataxia-taxis
| E1#1#(E1#1#3) = E1#1#3#2 = 10^^^10^^^3
| \(10\uparrow^3 10\uparrow^3 3\)
|
|
dekataxia-taxis
| E1#1#10#2 = E1#1#1#3 = 10^^^10^^^10
| \(10\uparrow^3 10\uparrow^3 10\)
|
|
hectataxia-taxis
| E1#1#100#2 = 10^^^10^^^100
| \(10\uparrow^3 10\uparrow^3 100\)
|
|
triataxiataxia-taxis
| E1#1#3#3 = 10^^^10^^^10^^^3
| \(10\uparrow^3 10\uparrow^3 10\uparrow^3 3\)
|
|
dekataxiataxia-taxis
| E1#1#10#3 = E1#1#1#4 = 10^^^10^^^10^^^10
| \(10\uparrow^3 10\uparrow^3 10\uparrow^3 10\)
|
|
hectataxiataxia-taxis
| E1#1#100#3 = 10^^^10^^^10^^^100
| \(10\uparrow^3 10\uparrow^3 10\uparrow^3 100\)
|
|