Fandom

Googology Wiki

Hyper-E notation

10,615pages on
this wiki
Add New Page
Talk22 Share
Hyper-E notation
Based onExponentiation
Growth rate\(f_{\omega}(n)\)

Hyper-E Notation (E# for short) is a notation for large numbers devised by Sbiis Saibian.[1] It was first introduced on his Web book One to Infinity: A Finite Journey on November 19, 2011, and was generalized to Extended Hyper-E Notation (xE# for short). Hyper-E Notation is a refined version of a notation Sbiis Saibian devised as a child.

E# is not primitive recursive, and specifically the function E(n) = En##n eventually dominates all primitive recursive functions.[2] In fact, in the fast-growing hierarchy, \(n \mapsto E100\#\#n\) dominates \(f_n\) for all \(n < \omega\) and is itself dominated by \(f_\omega\).

E# and xE# form part of a larger notation, the Extensible-E System, that also encompasses Cascading-E Notation.

Nathan Ho and Wojowu proved termination for the rules of Hyper-E Notation.[3]

Original definition Edit

The original Hyper-E Notation consists of a sequence an of one or more positive integer arguments separated by hyperions (or hyper marks) #. We notate this as E[b]a1#a2#...#an. b is called the base — if it is omitted, as it often is, it defaults to 10. "E[b]d" can also be denoted as "b^d".

The three rules are as follows:

  • Rule 1. If there are no hyperions:
    \(E[b]x = b^x\).
  • Rule 2. If the last entry is 1:
    \(E[b]{a_1}\#{a_2}\#{a_3}\cdots\#{a_n}\#1 = E[b]{a_1}\#{a_2}\#{a_3}\cdots\#{a_n}\).
  • Rule 3. Otherwise:
    \(E[b]{a_1}\#{a_2}\#{a_3}\cdots\#{a_{n-2}}\#{a_{n-1}}\#{a_n} =\)
    \(= E[b]{a_1}\#{a_2}\#{a_3}\cdots\#{a_{n-2}}\#(E[b]{a_1}\#{a_2}\#{a_3}\cdots\#{a_{n-2}}\#{a_{n-1}}\#{a_n-1})\)

In plain English:

  1. If there is only one argument x, the value of the expression is bx.
  2. If the last entry is 1, it may be removed.
  3. Otherwise...
    1. Evaluate the original expression, but with the last entry decreased by 1. Call this value z.
    2. Remove the last two entries of the expression.
    3. Add z as an entry to the end of the expression.

Extended definition Edit

Extended Hyper-E notation
Based onhyperion marks
Growth rate\(f_{\omega^{\omega}}(n)\)

Extended Hyper-E Notation allows multiple hyperions to appear between each entry. The number of hyperions following entry an is represented by h(n). For the sake of this definition, #n is a shorthand for n successive hyperion marks. For example, a full expression would be written E(b)a1#h(1)a2#h(2)...#h(n - 1)an#h(n). Saibian uses @ to indicate rest of expression such as Bowers uses # to indicate the rest of the array.

The difference between original and extended notation is that extended Hyper-E notation allows more than one consecutive #'s.

  • Rule 1. If there are no hyperions:
    \(E(b)x = b^x\).
  • Rule 2. If the last entry is 1:
    \(E(b) @ \#^{h(n-1)}{a_n}\#^{h(n)}1 = E(b) @ \#^{h(n-1)}{a_n}\).
  • Rule 3. If \(h(n-1)>1\):
    \(E(b) @ \#^{h(n-2)}{a_{n-1}}\#^{h(n-1)}{a_n} = E(b) @ \#^{h(n-2)}{a_{n-1}}\#^{h(n-1)-1}{a_{n-1}}\#^{h(n-1)}{a_n-1}\).
  • Rule 4. Otherwise:
    \(E(b) @ \#^{h(n-2)}{a_{n-1}}\#{a_n} = E(b) @ \#^{h(n-2)}(E(b) @ \#^{h(n-2)}{a_{n-1}}\#{a_n-1})\) (note \(\#^1\) = \(\#\)).

It seems similar to linear array notation rules. We can also rewrite it in plain English:

  1. If there is only one argument x, the value of the expression is bx.
  2. If the last entry is 1, it may be removed.
  3. Let h be the length of the last set of hyperion marks. If h > 1:
    1. Remove the last entry of the expression and call it r.
    2. Again remove the last entry of the expression; this time call it z.
    3. Repeat z r times with h - 1 hyperion marks in between each repetition. Append this to the end of the expression. (Restore a removed hyperion mark sequence to glue the two expressions together.)
  4. If the last set of hyperion marks is of length one:
    1. Evaluate the original expression, but with the last entry decreased by 1. Call this value z.
    2. Remove the last two entries of the expression.
    3. Add z as an entry to the end of the expression. (Again, restore a removed hyperion mark sequence to glue the two expressions together.)

Examples Edit

  • E(10)6 = E6 = E6#1 = 106 = million
  • E(10)100 = E100 = E100#1 = 10100 = googol
    This is an example of rule 1 with a one-entry expressions. Since the base defaults to 10, we can abbreviate E(10)100 as E100.
  • E100#2 = E(E100#1) = E10100 = 1010100 = googolplex
  • E100#3 = E(E100#2) = E1010100 = 101010100 = googolduplex
    This is an example of rule 3 (rule 4 in the expansion) with a two-entry expressions. In the second expression, the parentheses can be omitted: E(E100#1) = EE100#1.
  • E303#1 = E303 = eceton = centillion = 10303
  • E303#2 = ecetonplex = EE303 = 1010303
  • E303#3 = EEE303 = 101010303 = ecetonduplex
  • E1#3 = EEE1 = 1010101 = trialogue
  • E1#4 = EEEE1 = 10101010 = tetralogue
  • E1#10 = EEEEEEEEEE1 = 10^^10 = Decker
  • E303#6 = EEEEEE303 = 101010101010303 = ecetonquintiplex
  • E1#100 = EEE...EEE1 (100 E's) = giggol
    Repeated application of rule 3: E1#100 = EE1#99 = EEE1#98 = ...
  • E100#100 = EEE...EEE100 (100 E's) = grangol
    This is the same as E1#100, but with a different first entry.
  • E100#101 = EEE...EEE100 (101 E's) = grangolplex
    E100#101 = EE100#100 = 10grangol, hence the name.
  • E100#100#2 = E100#(E100#100) = EEE...EEE100 (grangol E's) = grangoldex
    Now we enter three-entry expressions.
  • E100#100#3 = E100#(E100#100#2) = E100#(E100#(E100#100)) = EEE...EEE100 (grangoldex E's) = grangoldudex
    Increasing the value of the third entry makes nesting deeper and deeper.
  • E100#100#100#100 = E100#100#(E100#100#100#99) = E100#100#(E100#100#(E100#100#100#98)) = ... gigangol
    Four-entry expressions are similar — they create deeper and deeper nesting in the array level below them. This can also be written as E100##4; the beginning of the next level of the notation.
  • E100##100 = E100#100#100#...#100#100#100 with 100 repetitions of 100 = gugold
    Now we have arrived at Extended Hyper-E Notation. Two successive hyperion marks (deutero-hyperions) indicate repetition at the lower level.
  • E100##100#100 = graatagold
    This expression decomposes into Ea##b expressions by applying rule 4 repeatedly.
  • E100##100##100 = E100##100#100#...#100#100 with 100 repetitions of 100 = gugolthra
    We ignore the first ## until the second one has been expanded and all the 100s have been solved.
  • E100###100 = E100##100##...##100##100 with 100 repetitions of 100 = throogol
    Three hyperion marks (trito-hyperions) constitute a repetition of two hyperion marks. Remember, the double marks are solved from right to left.
  • E100####100 = E100###100###...###100###100 with 100 repetitions of 100 = teroogol
    Quadruple hyperions decompose into triples.
  • Godgahlah = E100#####...#####100 with 100 hyperion marks or E100#100100
    Sets of 100 hyperion marks decompose into 99s, 99s decompose into 98s, etc. Also note that the superscript 100 means that there are 100 #'s, and should not be confused with E100#(100100).

Relationship to Other Notations Edit

The first levels of Hyper-E notation are based on on Exponentiation. That is, E(n) equals 10^n. Later on, the more E added, the greater the power tower until you start seeing hyperion marks. Different levels of singular hyperion marks can indicate different notations. For example, Hyper-E can relate to Arrow notation through the following rule: For any number defined as E(n)#(n)#(n)#(n)...#(n) with an X amount of n's, the corresponding figure in arrow notation is N ^^^...^^^ N+1 with an X amount of up arrows.

Pseudocode Edit

For a fixed number of variables, the original Hyper-E Notation is primitive-recursive, although the values it produces are well beyond that of any computer. The extended Hyper-E Notation is nonprimitive-recursive for two variables or more.

function Eb(a1, a2, ..., an - 1, an):

    if n = 1:
        return ba1

    if an = 1:
        return Eb(a1, a2, ..., an - 1)

    z := Eb(a1, a2, ..., an - 1, an - 1)

    return Eb(a1, a2, ..., an - 2, z)
 
function xEb(a1, a2, ..., an - 1, an;
             h1, h2, ..., hn - 2, hn - 1):

    if n = 1:
        return ba1

    if an = 1:
        return xEb(a1, a2, ..., an - 1;
                   h1, h2, ..., hn - 2)

    if hn - 1 > 1:
        r := an
        z := an - 1
        zseq := z, z, ..., z, z (r times)
        h := ah - 1
        hseq := h, h, ..., h, h (r - 1 times)
        return xEb(a1, a2, ..., an - 2, zseq;
                   h1, h2, ..., hn - 2, hseq)

    z := xEb(a1, a2, ..., an - 1;
             h1, h2, ..., hn - 2, hn - 1)
    return xEb(a1, a2, ..., an - 2, z;
               h1, h2, ..., hn - 2)

Sources Edit

  1. 4.3.1 - A 2nd Grader's Close Encounter with the Infinite - Large Numbers
  2. https://sites.google.com/site/largenumbers/home/appendix/c
  3. http://snappizz.com/termination

See also Edit

Browse the Hyper-E numbers
Saibian's Hyper-E numbers | Cascading-E
Gugold — Throogol
Gugold—gugolthra series: gugold · gugoldagong · great googol ·gugolda-suplex · gugolda-suplexigong · gugolda-dusuplex · gugolda-dusuplexigong · graatagold · graatagoldagong · graatagolda-sudex · graatagolda-sudexigong · graatagolda-dusudex · graatagolda-dusudexigong · greegold · greegoldagong · greegolda-suthrex · greegolda-suthrexigong · greegolda-dusuthrex · greegolda-dusuthrexigong · grinningold · grinningoldagong · grinningolda-sutetrex · grinningolda-sutetrexigong · grinningolda-dusutetrex · grinningolda-dusutetrexigong · golaagold · golaagoldagong · golaagolda-supentex · golaagolda-supentexigong · golaagolda-dusupentex · golaagolda-dusupentexigong · gruelohgold · gruelohgoldagong · gruelohgolda-suhex · gruelohgolda-suhexigong · gruelohgolda-dusuhex · gruelohgolda-dusuhexigong · gaspgold · gaspgoldagong · gaspgolda-suheptex · gaspgolda-suheptexigong · gaspgolda-dusuheptex · gaspgolda-dusuheptexigong · ginorgold · ginorgoldagong · ginorgolda-suoctex · ginorgolda-suoctexigong · ginorgolda-dusuoctex · ginorgolda-dusuoctexigong · gargantuuld · googondold
Gugolthra—throogol series: gugolthra · graatagolthra · greegolthra · grinningolthra · golaagolthra · gruelohgolthra · gaspgolthra · ginorgolthra · gargantuulthra · googondolthra · gugoltesla · graatagoltesla · greegoltesla · grinningoltesla · golaagoltesla · gruelohgoltesla · gaspgoltesla · ginorgoltesla · gargantuultesla · googondoltesla · gugolpeta · graatagolpeta · greegolpeta · grinningolpeta · golaagolpeta · gruelohgolpeta · gaspgolpeta · ginorgolpeta · gargantuulpeta · googondolpeta · gugolhexa · graatagolhexa · greegolhexa · grinningolhexa · golaagolhexa · gruelohgolhexa · gaspgolhexa · ginorgolhexa · gargantuulhexa · googondolhexa · gugolhepta · graatagolhepta · greegolhepta · grinningolhepta · golaagolhepta · gruelohgolhepta · gaspgolhepta · ginorgolhepta · gargantuulhepta · googondolhepta · gugolocta · graatagolocta · greegolocta · grinningolocta · golaagolocta · gruelohgolocta · gaspgolocta · ginorgolocta · gargantuulocta · googondolocta · gugolenna · graatagolenna · greegolenna · grinningolenna · golaagolenna · gruelohgolenna · gaspgolenna · ginorgolenna · gargantuulenna · googondolenna · gugoldeka · graatagoldeka · greegoldeka · grinningoldeka · golaagoldeka · gruelohgoldeka · gaspgoldeka · ginorgoldeka · gargantuuldeka · googondoldeka
Throogol — Godgahlah-ex-grand godgahlah
Throogol—tetroogol series: throogol · thrangol · threagol · thrigangol · throrgegol · thrulgol · thraspgol · thrinorgol · thrargantuul · throogondol · thrugold · thraatagold · threegold · thrinningold · throlaagold · thruelohgold · thraspgold · thrinorgold · thrargantuuld · throogondold · thrugolthra · thrugoltesla · thrugolpeta · thrugolhexa · thrugolhepta · thrugolocta · throotrigol · thrantrigol · threatrigol · thrutrigold · thraatatrigold · threetrigold · thrutrigolthra · thraatatrigolthra · thrutrigoltesla · thrutrigolpeta · thrutrigolhexa · throotergol · thrantergol · threatergol · thrutergold · thraatatergold · thrutergolthra · thrutergoltesla · thrutergolpeta · thrutergolhexa · throopetol · thranpetol · thrupetold · thrupetolthra · throohexol · thranhexol · thruhexold · thruhexolthra · throoheptgol · throogogdol
Tetroogol—grand grand godgahlahgong series: tetroogol · tetrangol · tetreagol · tetrugold · tetraatagold · tetrugolthra · tetrugoltesla · tetrithroogol · tetrithrootrigol · tetrithrootergol · tetrithroopetol · tetrithroohexol · tetrootrigol · tetratrithroogol · tetratrithrootrigol · tetrootergol · tetraterithroogol · tetroopetol · tetroohexol · tetrooheptgol · tetroogogdol · pentoogol · hexoogol · heptoogol · ogdoogol · ogdahepti-hexapenti-tetrithroogol · ogdatri-hexi-pentateri-tetrapetithrinortrigolthra · entoogol · dektoogol
Godgahlah - godgahlah-ex-grand godgahlah series: godgahlah · godgahlahgong · grand godgahlah · grand godgahlahgong · grand grand godgahlah · grand grand grand godgahlah · grand grand grand grand godgahlah · hundred-ex-grand godgahlah · godgahlah-ex-grand godgahlah


Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.