The juggler map is defined as \(J(n) = \lfloor n^{1/2} \rfloor\) for even \(n\) and \(J(n) = \lfloor n^{3/2} \rfloor\) for odd \(n\). A juggler sequence, then, is a type of positive integer sequence defined recursively by a given base value \(a_0\) and the recurrence relation \(a_{n + 1} = J(a_n)\).[1] Juggler sequences were first defined by Clifford Pickover.

Juggler sequences tend to grow rapidly, decline, and stabilize at \(J(1) = 1\). It is an unproven conjecture that all juggler sequences end up stabilizing at 1; this has parallels to Collatz conjecture in its definition.

Certain initial values create juggler sequences that reach unusually high maxima. \(a_0 = 37\) creates a trajectory that peaks at 24906114455136, and \(a_0 = 30817\) peaks at a value with 45391 digits.

Sources Edit

  1. Juggler Sequence -- from Wolfram MathWorld

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.