FANDOM


This is a (currently incomplete) list of powers of 10 in ascending order that have articles on the Googology Wiki. All numbers with the "-illion" suffix are in short scale.

\(10^{-10^{10^{10^{100}}}}\) to \(10^{-1}\) Edit

\(10^{0}\) to \(10^{49}\) Edit

\(10^{50}\) to \(10^{99}\) Edit

\(10^{100}\) to \(10^{199}\) Edit

\(10^{200}\) to \(10^{299}\) Edit

\(10^{300}\) to \(10^{999}\) Edit

\(10^{1,000}\) to \(10^{9,999}\) Edit

\(10^{10,000}\) to \(10^{999,999}\) Edit

\(10^{1,000,000}\) to \(10^{9,999,999,999}\) Edit

\(10^{10,000,000,000}\) to \(10^{10^{20}-1}\) Edit

\(10^{10^{20}}\) to \(10^{10^{50}-1}\) Edit

\(10^{10^{50}}\) to \(10^{10^{100}-1}\) Edit

\(10^{10^{100}}\) to \(10^{10^{1000}-1}\) Edit

\(10^{10^{1000}}\) to \(10^{10^{1,000,000}-1}\) Edit

\(10^{10^{1,000,000}}\) to \(10^{10^{10^{30}}-1}\) Edit

\(10^{10^{10^{30}}}\) to \(10^{10^{10^{100}}-1}\) Edit

  • Dakillion, \(10^{3 \times 10^{3 \times 10^{30}}+3}\)
  • Hendillion, \(10^{3 \times 10^{3 \times 10^{33}}+3}\)
  • Dokillion, \(10^{3 \times 10^{3 \times 10^{36}}+3}\)
  • Tradakillion, \(10^{3 \times 10^{3 \times 10^{39}}+3}\)
  • Tedakillion, \(10^{3 \times 10^{3 \times 10^{42}}+3}\)
  • Pedakillion, \(10^{3 \times 10^{3 \times 10^{45}}+3}\)
  • Exdakillion, \(10^{3 \times 10^{3 \times 10^{48}}+3}\)
  • Gogolduplex, \(10^{10^{10^{50}}}\)
  • Zedakillion, \(10^{3 \times 10^{3 \times 10^{51}}+3}\)
  • Exitrillion, \(H(H(H(16))) = 10^{3 \times 10^{3 \times 10^{51}+3}+3} \approx E51\#3\), where \(H(x) = 10^{3x+3}\)
  • Yodakillion, \(10^{3 \times 10^{3 \times 10^{54}}+3}\)
  • Nedakillion, \(10^{3 \times 10^{3 \times 10^{57}}+3}\)
  • Ikillion, \(10^{3 \times 10^{3 \times 10^{60}}+3}\)
  • Ikenillion, \(10^{3 \times 10^{3 \times 10^{63}}+3}\)
  • Icodillion, \(10^{3 \times 10^{3 \times 10^{66}}+3}\)
  • Ictrillion, \(10^{3 \times 10^{3 \times 10^{69}}+3}\)
  • Icterillion, \(10^{3 \times 10^{3 \times 10^{72}}+3}\)
  • Icpetillion, \(10^{3 \times 10^{3 \times 10^{75}}+3}\)
  • Ikectillion, \(10^{3 \times 10^{3 \times 10^{78}}+3}\)
  • Iczetillion, \(10^{3 \times 10^{3 \times 10^{81}}+3}\)
  • Ikyotillion, \(10^{3 \times 10^{3 \times 10^{84}}+3}\)
  • Icxenillion, \(10^{3 \times 10^{3 \times 10^{87}}+3}\)
  • Trakillion, \(10^{3 \times 10^{3 \times 10^{90}}+3}\)
  • Trakenillion, \(10^{3 \times 10^{3 \times 10^{93}}+3}\)
  • Tracodillion, \(10^{3 \times 10^{3 \times 10^{96}}+3}\)
  • Tractrillion, \(10^{3 \times 10^{3 \times 10^{99}}+3}\)
  • Googolyllion, \(10^{2^{10^{100}+2}}\)

\(10^{10^{10^{100}}}\) to \(10^{10^{10^{10,000}}}\) Edit

  • Googolduplex, \(10^{10^{10^{100}}}\)
  • Fzgoogolplex, \(10^{10^{10^{100}+100}}\)
  • Googolbangplex, \(10^{10^{100}!}\) or \(10^{\text{googolbang}}\)
  • Fugagoogol, \(10^{10^{10^{102}-98}}\)
  • Tracterillion, \(10^{3 \times 10^{3 \times 10^{102}}+3}\)
  • Tracpetillion, \(10^{3 \times 10^{3 \times 10^{105}}+3}\)
  • Trakectillion, \(10^{3 \times 10^{3 \times 10^{108}}+3}\)
  • Traczetillion, \(10^{3 \times 10^{3 \times 10^{111}}+3}\)
  • Trakyotillion, \(10^{3 \times 10^{3 \times 10^{114}}+3}\)
  • Tracxenillion, \(10^{3 \times 10^{3 \times 10^{117}}+3}\)
  • Tekillion, \(10^{3 \times 10^{3 \times 10^{120}}+3}\)
  • Pekillion, \(10^{3 \times 10^{3 \times 10^{150}}+3}\)
  • Exakillion, \(10^{3 \times 10^{3 \times 10^{180}}+3}\)
  • Zakillion, \(10^{3 \times 10^{3 \times 10^{210}}+3}\)
  • Yokillion, \(10^{3 \times 10^{3 \times 10^{240}}+3}\)
  • Nekillion, \(10^{3 \times 10^{3 \times 10^{270}}+3}\)
  • Hotillion, \(10^{3 \times 10^{3 \times 10^{300}}+3}\)
  • Ecetonduplex, \(E303\#3\) = \(10^{10^{10^{303}}}\)
  • Botillion, \(10^{3 \times 10^{3 \times 10^{600}}+3}\)
  • Trotillion, \(10^{3 \times 10^{3 \times 10^{900}}+3}\)
  • Googolduplexichime, \(E3\#4\) = \(E1000\#3\) = \(10^{10^{10^{1000}}}\)
  • Totillion, \(10^{3 \times 10^{3 \times 10^{1200}}+3}\)
  • Potillion, \(10^{3 \times 10^{3 \times 10^{1500}}+3}\)
  • Exotillion, \(10^{3 \times 10^{3 \times 10^{1800}}+3}\)
  • Zotillion, \(10^{3 \times 10^{3 \times 10^{2100}}+3}\)
  • Yootillion, \(10^{3 \times 10^{3 \times 10^{2400}}+3}\)
  • Notillion, \(10^{3 \times 10^{3 \times 10^{2700}}+3}\)
  • Kalillion, \(10^{3 \times 10^{3 \times 10^{3000}}+3}\)
  • Dalillion, \(10^{3 \times 10^{3 \times 10^{6000}}+3}\)
  • Tralillion, \(10^{3 \times 10^{3 \times 10^{9000}}+3}\)

\(10^{10^{10^{10,000}}}\) to \(E10\#4=10^{10^{10^{10^{10}}}}\) Edit

  • Googolduplexitoll, \(E4\#4\) = \(E10,000\#3\) = \(10^{10^{10^{10,000}}}\)
  • Talillion, \(10^{3 \times 10^{3 \times 10^{12,000}}+3}\)
  • Palillion, \(10^{3 \times 10^{3 \times 10^{15,000}}+3}\)
  • Exalillion, \(10^{3 \times 10^{3 \times 10^{18,000}}+3}\)
  • Zalillion, \(10^{3 \times 10^{3 \times 10^{21,000}}+3}\)
  • Yalillion, \(10^{3 \times 10^{3 \times 10^{24,000}}+3}\)
  • Nalillion, \(10^{3 \times 10^{3 \times 10^{27,000}}+3}\)
  • Dakalillion, \(10^{3 \times 10^{3 \times 10^{30,000}}+3}\)
  • Hendakalillion, \(10^{3 \times 10^{3 \times 10^{33,000}}+3}\)
  • Dokalillion, \(10^{3 \times 10^{3 \times 10^{36,000}}+3}\)
  • Tradakalillion, \(10^{3 \times 10^{3 \times 10^{39,000}}+3}\)
  • Tedakalillion, \(10^{3 \times 10^{3 \times 10^{42,000}}+3}\)
  • Pedakalillion, \(10^{3 \times 10^{3 \times 10^{45,000}}+3}\)
  • Exadakalillion, \(10^{3 \times 10^{3 \times 10^{48,000}}+3}\)
  • Zedakalillion, \(10^{3 \times 10^{3 \times 10^{51,000}}+3}\)
  • Yodakalillion, \(10^{3 \times 10^{3 \times 10^{54,000}}+3}\)
  • Nedakalillion, \(10^{3 \times 10^{3 \times 10^{57,000}}+3}\)
  • Ikalillion, \(10^{3 \times 10^{3 \times 10^{60,000}}+3}\)
  • Googolduplexigong, \(E5\#4\) = \(E100,000\#3\) = \(10^{10^{10^{100,000}}}\)
  • Zacalillion, \(10^{3 \times 10^{3 \times 10^{210,000}}+3}\)
  • Hotalillion, \(10^{3 \times 10^{3 \times 10^{300,000}}+3}\)
  • Millitriplexion, \(E6\#4\) = \(E1,000,000\#3\) = \(10^{10^{10^{1,000,000}}}\)
  • Totalillion, \(10^{3 \times 10^{3 \times 10^{1,200,000}}+3}\)
  • Mejillion, \(10^{3 \times 10^{3 \times 10^{3,000,000}}+3}\)
  • Dakejillion, \(10^{3 \times 10^{3 \times 10^{30,000,000}}+3}\)
  • Googolduplexibong, \(E8\#4\) = \(E100,000,000\#3\) = \(10^{10^{10^{100,000,000}}}\)
  • Hotejillion, \(10^{3 \times 10^{3 \times 10^{300,000,000}}+3}\)
  • Gijillion, \(10^{3 \times 10^{3 \times 10^{3,000,000,000}}+3}\)

\(E10\#4=10^{10^{10^{10^{10}}}}\) to \(E100\#4=10^{10^{10^{10^{100}}}}\) Edit

\(E100\#4\) to \(10\uparrow\uparrow7\)Edit

\(10\uparrow\uparrow7\) to \(10\uparrow\uparrow10\)Edit

\(10\uparrow\uparrow10\) to \(10\uparrow\uparrow20\) Edit

\(10\uparrow\uparrow20\) to \(10\uparrow\uparrow100\) Edit

\(10\uparrow\uparrow100\) to \(10\uparrow\uparrow1,000,000\) Edit

\(10\uparrow\uparrow1,000,000\) to \(10\uparrow\uparrow10^{100}\) Edit

\(10\uparrow\uparrow10^{100}\) to \(10\uparrow\uparrow10\uparrow\uparrow10\) Edit

\(10↑↑↑3 - 10↑↑↑10\)Edit

  • Giggolplex, \(10 \uparrow\uparrow 10 \uparrow\uparrow 100\)
  • Grangoldex, \(E100\#100\#2\)
  • Grangoldexichime, \(E1000\#1000\#2\)
  • Grangoldexitoll, \(E10000\#10000\#2\)
  • Zootzootzootplex, \(zootzootplex^{(zootzootplex-1)^{(zootzootplex-2)^{.^{.^{.^{4^{3^{2^{1}}}}}}}}}\)
  • Tetra-taxis, \(10 \uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 10\)
  • Penta-taxis, \(10 \uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 10\)

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.