## FANDOM

10,407 Pages

For Tiaokhiao's mecillion, see decillion.

The mecillion is equal to $$10^{3\left(10^{33}\right)+3}$$, or $$10^{3\text{ decillion }3}$$.[1] The term was coined by Jonathan Bowers. It is 3,000,000,000,000,000,000,000,000,000,000,004 digits long.

Mecillion is also known as one milliamilliamilliamilliamilliamilliamilliamilliamilliamilliamilliatillion according to Landon Curt Noll's The English name of a number.

### Etymology

The name of this number is based on the suffix "-illion" and the prefix "meco-".

### Approximations in other notations

Notation Lower bound Upper bound
Arrow notation $$1000\uparrow(1+10\uparrow33)$$
Down-arrow notation $$1000\downarrow\downarrow12$$ $$70\downarrow\downarrow19$$
Steinhaus-Moser Notation 23[3][3] 24[3][3]
Copy notation 2[2[34]] 3[3[34]]
H* function H(H(10))
Taro's multivariable Ackermann function A(3,A(3,109)) A(3,A(3,110))
Pound-Star Notation #*((1))*(1,4,0,1)*4 #*((1))*(0,5,1)*6
BEAF {1000,1+{10,33}}
Hyper-E notation E(3+3E33)
Bashicu matrix system (0)(1)[109] (0)(1)[110]
Hyperfactorial array notation (29!)! (30!)!
Fast-growing hierarchy $$f_2(f_2(106))$$ $$f_2(f_2(107))$$
Hardy hierarchy $$H_{\omega^22}(106)$$ $$H_{\omega^22}(107)$$
Slow-growing hierarchy $$g_{\omega^{\omega^{\omega3+3}3+3}}(10)$$

### Sources

1. Illion Numbers by Jonathan Bowers