FANDOM


Nested factorial notation is an extension of the factorial function, created by Aarex Tiaokhiao.[1] It is formally defined as follows:

n!m = ((...(((n!)!)!...)!)! w/m nested factorials (not to be confused with n! to the power of m).

For example, 3!3 = ((3!)!)! = (6!)! = 720! It's decimal expansion is:

2601218943565795100204903227081043611191521875016945785727541837850835631156947382240678577958130457082619920575892247259536641565162052015873791984587740832529105244690388811884123764341191951045505346658616243271940197113909845536727278537099345629855586719369774070003700430783758997420676784016967207846280629229032107161669867260548988445514257193985499448939594496064045132362140265986193073249369770477606067680670176491669403034819961881455625195592566918830825514942947596537274845624628824234526597789737740896466553992435928786212515967483220976029505696699927284670563747137533019248313587076125412683415860129447566011455420749589952563543068288634631084965650682771552996256790845235702552186222358130016700834523443236821935793184701956510729781804354173890560727428048583995919729021726612291298420516067579036232337699453964191475175567557695392233803056825308599977441675784352815913461340394604901269542028838347101363733824484506660093348484440711931292537694657354337375724772230181534032647177531984537341478674327048457983786618703257405938924215709695994630557521063203263493209220738320923356309923267504401701760572026010829288042335606643089888710297380797578013056049576342838683057190662205291174822510536697756603029574043387983471518552602805333866357139101046336419769097397432285994219837046979109956303389604675889865795711176566670039156748153115943980043625399399731203066490601325311304719028898491856203766669164468791125249193754425845895000311561682974304641142538074897281723375955380661719801404677935614793635266265683339509760000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Extended Nested Factorial Notation Edit

Aarex defined n![2], which is equal to n!n. Also he defined multorial of n, is same at n![2].

Next is n!2[2], is equal to (n!n)!n!n.

Then n!3[2] = (n!n)!2[2], and so on.

He defined n!n[2], is same at n![3]. And also defined n![4], is equal to n!n[3].

In general, n![m] is equal to n!n[m-1]. For example, 7![3], is equal to 7!7[2].

The limit of this notation is n![n].

Multi-entry Factorial Notation Edit

We defined n![1,2], which is equal to n![n].

Then n![2,2] = n!n[1,2], n![3,2] = n!n[2,2], etc.

Sources Edit

  1. Nested Factorial Notation - Aarex large numbers

See also Edit

Main article: Factorial
Multifactorials: Double factorial · Multifactorial
Falling and rising: Falling factorial · Rising factorial
Other mathematical variants: Alternating factorial · Hyperfactorial · q-factorial · Roman factorial · Subfactorial · Weak factorial · Bouncing Factorial
Tetrational growth: Exponential factorial · Expostfacto function · Superfactorial by Clifford Pickover
Array-based extensions: Hyperfactorial array notation · Nested factorial notation
Other googological variants: · Superfactorial by Sloane and Plouffe · Torian · Factorexation · Mixed factorial · Bouncing Factorial


Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.