## FANDOM

10,220 Pages

The nonitetrom (also called zeraddep, uniphi and uninphi) is equal to $$f_{\omega\uparrow\uparrow9}(10) = f_{\varepsilon(0)}(10) = f_{\varphi(1,0)}(10) = f_{\varphi(\varphi(0,0),0)}(10)$$ using the fast-growing hierarchy.[1] The term was coined by wiki user Denis Maksudov.

## Etymology Edit

The 3 parts of the name "nonitetrom", "noni", "tetr" and "om", mean 9, tetration and $$\omega$$ respectively, which form $$\omega\uparrow\uparrow9$$ when concatenated backwards. So the full name indicates the ordinal index of the number.

The 3 parts of the name "zeraddep", "zero", "add" and "ep", mean 0, addition and $$\varepsilon_0$$ respectively, which form $$\varepsilon_0$$ when concatenated backwards. So the full name indicates the ordinal index of the number.

The 2 parts of the name "uniphi", "uni" and "phi", mean 1 and $$\varphi$$ function respectively, which form $$\varphi(1,0)$$ when concatenated backwards. So the full name indicates the ordinal index of the number.

The 3 parts of the name "uninphi", "uni", "in" and "phi", mean 1, the "in-" operation and $$\varphi$$ function respectively, which form $$\varphi(\varphi(0,0),0)$$ (i.e. one more insertion of $$\varphi$$) when concatenated backwards. So the full name indicates the ordinal index of the number.

## Approximations in other notations Edit

Notation Approximation
BEAF $$X \uparrow\uparrow 9 \& 10$$
Bird's array notation $$\{10,9[1 \backslash 2] 2\}$$
Hyperfactorial array notation $$10![1,1,2,8]$$
Extended Cascading-E Notation $$E10\#\text{^^}\#9$$
Hardy hierarchy $$H_{\omega \uparrow \uparrow 10}(10)$$
Slow-growing hierarchy $$g_{\vartheta(\Omega \uparrow \uparrow 9)}(10)$$

## Sources Edit

1. My system of number names (FGS) - Traveling To The Infinity
Numbers by Denis Maksudov
Alpha series
Epsilon series
Epsilon(0)-multiplication series: Bultep · Trultep · Quadrultep · Quintultep · Sextultep · Septultep · Octultep · Nonultep · Dekultep · Hektultep · Kilultep · Megultep · Gigultep · Terultep · Petultep · Exultep · Zettultep · Yottultep
Epsilon(0)-exponentiation series: Bexep · Trexep · Quadrexep · Quintexep · Sextexep · Septexep · Octexep · Nonexep · Dekexep · Hektexep · Kilexep · Megexep · Gigexep · Terexep · Petexep · Exexep · Zettexep · Yottexep
Epsilon(0)-tetration series: Bitetrep · Tritetrep · Quadritetrep · Quintitetrep · Sextitetrep · Septitetrep · Octitetrep · Nonitetrep · Dekotetrep · Hektotetrep · Kilotetrep · Megotetrep · Gigotetrep · Terotetrep · Petotetrep · Exotetrep · Zettotetrep · Yottotetrep
Inserted epsilon series: Uninep · Binep · Trinep · Quadrinep · Quintinep · Sextinep · Septinep · Octinep · Noninep · Dekinep · Hektinep · Kilinep · Meginep · Giginep · Terinep · Petinep · Exinep · Zettinep · Yottinep
Inserted zeta series
Inserted eta series
Phi series
Initial phi series: Uniphi · Biphi · Triphi · Quadriphi · Quintiphi · Sextiphi · Septiphi · Octiphi · Noniphi · Dekophi · Hektophi · Kilophi · Megophi · Gigophi · Terophi · Petophi · Exophi · Zettophi · Yottophi
Inserted phi series: Uninphi · Binphi · Trinphi · Quadrinphi · Quintinphi · Sextinphi · Septinphi · Octinphi · Noninphi · Dekinphi · Hektinphi · Kilinphi · Meginphi · Giginphi · Terinphi · Petinphi · Exinphi · Zettinphi · Yottinphi
Inserted gamma series
Theta series
Psi series
$$I_\alpha$$ series
$$I(\alpha,\beta)$$ series
Initial $$I(\alpha,\beta)$$ series: Unimah · Bimah · Trimah · Quadrimah · Quintimah · Sextimah · Septimah · Octimah · Nonimah · Dekimah · Hektimah · Kilimah · Megimah · Gigimah · Terimah · Petimah · Eximah · Zettimah · Yottimah
Inserted $$I(\alpha,\beta)$$ series: Uninimah · Binimah · Trinimah · Quadrinimah · Quintinimah · Sextinimah · Septinimah · Octinimah · Noninimah · Dekinimah · Hektinimah · Kilinimah · Meginimah · Giginimah · Terinimah · Petinimah · Exinimah · Zettinimah · Yottinimah
M-series