## FANDOM

9,997 Pages

The pentacthulcross regiment is a series of numbers from E100#^^^##100 to E100#^^^###90 defined using Extended Cascading-E Notation (i.e. beginning from pentacthulcross and up to enenintastaculated pentacthulcross).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Pentacthulhum regiment Pentacthulcubor regiment

## List of numbers of the regiment Edit

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation)
pentacthulcross E100#^^^##100 $$f_{\varphi(1,1,0)}(100)$$
grand pentacthulcross E100#^^^##100#2 $$f_{\varphi(1,1,0)}^2(100)$$
grangol-carta-pentacthulcross E100#^^^##100#100 $$f_{\varphi(1,1,0)+1}(100)$$
godgahlah-carta-pentacthulcross E100#^^^##100#^#100 $$f_{\varphi(1,1,0)+\omega^\omega}(100)$$
tethrathoth-carta-pentacthulcross E100#^^^##100#^^#100 $$f_{\varphi(1,1,0)+\varepsilon_0}(100)$$
tethracross-carta-pentacthulcross E100#^^^##100#^^##100 $$f_{\varphi(1,1,0)+\zeta_0}(100)$$
tethracubor-carta-pentacthulcross E100#^^^##100#^^###100 $$f_{\varphi(1,1,0)+\eta_0}(100)$$
tethrateron-carta-pentacthulcross E100#^^^##100#^^####100 $$f_{\varphi(1,1,0)+\varphi(4,0)}(100)$$
tethrapeton-carta-pentacthulcross E100#^^^##100(#^^#^5)100 $$f_{\varphi(1,1,0)+\varphi(5,0)}(100)$$
tethrahexon-carta-pentacthulcross E100#^^^##100(#^^#^6)100 $$f_{\varphi(1,1,0)+\varphi(6,0)}(100)$$
tethrahepton-carta-pentacthulcross E100#^^^##100(#^^#^7)100 $$f_{\varphi(1,1,0)+\varphi(7,0)}(100)$$
tethra-ogdon-carta-pentacthulcross E100#^^^##100(#^^#^8)100 $$f_{\varphi(1,1,0)+\varphi(8,0)}(100)$$
tethrennon-carta-pentacthulcross E100#^^^##100(#^^#^9)100 $$f_{\varphi(1,1,0)+\varphi(9,0)}(100)$$
tethradekon-carta-pentacthulcross E100#^^^##100(#^^#^10)100 $$f_{\varphi(1,1,0)+\varphi(10,0)}(100)$$
tethratope-carta-pentacthulcross E100#^^^##100#^^#^#100 $$f_{\varphi(1,1,0)+\varphi(\omega,0)}(100)$$
tethrarxitri-carta-pentacthulcross E100#^^^##100#^^#^^#100 $$f_{\varphi(1,1,0)+\varphi(\varepsilon_0,0)}(100)$$
tethrarxitet-carta-pentacthulcross E100#^^^##100#^^#^^#^^#100 $$f_{\varphi(1,1,0)+\varphi(\varphi(\varepsilon_0,0),0)}(100)$$
tethrarxipent-carta-pentacthulcross E100#^^^##100#^^^#5 $$f_{\varphi(1,1,0)+\Gamma_0[5]}(100)$$
tethrarxihex-carta-pentacthulcross E100#^^^##100#^^^#6 $$f_{\varphi(1,1,0)+\Gamma_0[6]}(100)$$
tethrarxihept-carta-pentacthulcross E100#^^^##100#^^^#7 $$f_{\varphi(1,1,0)+\Gamma_0[7]}(100)$$
tethrarxi-ogd-carta-pentacthulcross E100#^^^##100#^^^#8 $$f_{\varphi(1,1,0)+\Gamma_0[8]}(100)$$
tethrarxi-enn-carta-pentacthulcross E100#^^^##100#^^^#9 $$f_{\varphi(1,1,0)+\Gamma_0[9]}(100)$$
tethrarxideck-carta-pentacthulcross E100#^^^##100#^^^#10 $$f_{\varphi(1,1,0)+\Gamma_0[10]}(100)$$
pentacthulhum-carta-pentacthulcross E100#^^^##100#^^^#100 $$f_{\varphi(1,1,0)+\Gamma_0}(100)$$
dustaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^#>#^^^#100 $$f_{\varphi(1,0,0)+\Gamma_{\Gamma_0}}(100)$$
tristaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^#>#^^^#>#^^^#100 $$f_{\varphi(1,1,0)+\Gamma_{\Gamma_{\Gamma_0}}}(100)$$
tetrastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^#>#^^^#>#^^^#>#^^^#100

= E100#^^^##100#^^^##4

$$f_{\varphi(1,1,0)+\varphi(1,1,0)[4]}(100)$$
pentastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^##5 $$f_{\varphi(1,1,0)+\varphi(1,1,0)[5]}(100)$$
hexastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^##6 $$f_{\varphi(1,1,0)+\varphi(1,1,0)[6]}(100)$$
heptastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^##7 $$f_{\varphi(1,1,0)+\varphi(1,1,0)[7]}(100)$$
ogdastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^##8 $$f_{\varphi(1,1,0)+\varphi(1,1,0)[8]}(100)$$
ennastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^##9 $$f_{\varphi(1,1,0)+\varphi(1,1,0)[9]}(100)$$
dekastaculpentacthulhum-carta-pentacthulcross E100#^^^##100#^^^##10 $$f_{\varphi(1,1,0)+\varphi(1,1,0)[10]}(100)$$
pentacthulcross-by-deuteron E100#^^^##100#^^^##100 $$f_{\varphi(1,1,0)2}(100)$$
pentacthulcross-by-hyperion E100#^^^##*#100 $$f_{\varphi(1,1,0)\omega}(100)$$
pentacthulcross-by-godgahlah E100#^^^##*#^#100 $$f_{\varphi(1,1,0)\omega^\omega}(100)$$
pentacthulcross-by-tethrathoth E100#^^^##*#^^#100 $$f_{\varphi(1,1,0)\varepsilon_0}(100)$$
pentacthulcross-by-tethracross E100#^^^##*#^^##100 $$f_{\varphi(1,1,0)\zeta_0}(100)$$
pentacthulcross-by-tethracubor E100#^^^##*#^^###100 $$f_{\varphi(1,1,0)\eta_0}(100)$$
pentacthulcross-by-tethrateron E100#^^^##*#^^####100 $$f_{\varphi(1,1,0)\times\varphi(4,0)}(100)$$
pentacthulcross-by-tethrapeton E100#^^^##*(#^^#^5)100 $$f_{\varphi(1,1,0)\times\varphi(5,0)}(100)$$
pentacthulcross-by-tethrahexon E100#^^^##*(#^^#^6)100 $$f_{\varphi(1,1,0)\times\varphi(6,0)}(100)$$
pentacthulcross-by-tethrahepton E100#^^^##*(#^^#^7)100 $$f_{\varphi(1,1,0)\times\varphi(7,0)}(100)$$
pentacthulcross-by-tethra-ogdon E100#^^^##*(#^^#^8)100 $$f_{\varphi(1,1,0)\times\varphi(8,0)}(100)$$
pentacthulcross-by-tethrennon E100#^^^##*(#^^#^9)100 $$f_{\varphi(1,1,0)\times\varphi(9,0)}(100)$$
pentacthulcross-by-tethradekon E100#^^^##*(#^^#^10)100 $$f_{\varphi(1,1,0)\times\varphi(10,0)}(100)$$
pentacthulcross-by-tethratope E100#^^^##*#^^#^#100 $$f_{\varphi(1,1,0)\times\varphi(\omega,0)}(100)$$
pentacthulcross-by-tethrarxitri E100#^^^##*#^^#^^#100 $$f_{\varphi(1,1,0)\times\varphi(\varepsilon_0,0)}(100)$$
pentacthulcross-by-tethrarxitet E100#^^^##*#^^#^^#^^#100 $$f_{\varphi(1,1,0)\times\varphi(\varphi(\varepsilon_0,0),0)}(100)$$
pentacthulcross-by-tethrarxipent E100#^^^##*#^^^#5 $$f_{\varphi(1,1,0)\times\Gamma_0[5]}(100)$$
pentacthulcross-by-tethrarxihex E100#^^^##*#^^^#6 $$f_{\varphi(1,1,0)\times\Gamma_0[6]}(100)$$
pentacthulcross-by-tethrarxihept E100#^^^##*#^^^#7 $$f_{\varphi(1,1,0)\times\Gamma_0[7]}(100)$$
pentacthulcross-by-tethrarxi-ogd E100#^^^##*#^^^#8 $$f_{\varphi(1,1,0)\times\Gamma_0[8]}(100)$$
pentacthulcross-by-tethrarxi-enn E100#^^^##*#^^^#9 $$f_{\varphi(1,1,0)\times\Gamma_0[9]}(100)$$
pentacthulcross-by-tethrarxideck E100#^^^##*#^^^#10 $$f_{\varphi(1,1,0)\times\Gamma_0[10]}(100)$$
pentacthulcross-by-pentacthulhum E100#^^^##*#^^^#100 $$f_{\varphi(1,1,0)\times\Gamma_0}(100)$$
pentacthulcross-by-dustaculated-pentacthulhum E100#^^^##*#^^^#>#^^^#100 $$f_{\varphi(1,1,0)\times\Gamma_{\Gamma_0}}(100)$$
pentacthulcross-by-tristaculated-pentacthulhum E100#^^^##*#^^^#>#^^^#>#^^^#100 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[3]}(100)$$
pentacthulcross-by-tetrastaculated-pentacthulhum E100#^^^##*#^^^#>#^^^#>#^^^#>#^^^#100

= E100#^^^##*#^^^##4

$$f_{\varphi(1,1,0)\times\varphi(1,1,0)[4]}(100)$$
pentacthulcross-by-pentastaculated-pentacthulhum E100#^^^##*#^^^##5 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[5]}(100)$$
pentacthulcross-by-hexastaculated-pentacthulhum E100#^^^##*#^^^##6 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[6]}(100)$$
pentacthulcross-by-heptastaculated-pentacthulhum E100#^^^##*#^^^##7 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[7]}(100)$$
pentacthulcross-by-ogdastaculated-pentacthulhum E100#^^^##*#^^^##8 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[8]}(100)$$
pentacthulcross-by-ennastaculated-pentacthulhum E100#^^^##*#^^^##9 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[9]}(100)$$
pentacthulcross-by-dekastaculated-pentacthulhum E100#^^^##*#^^^##10 $$f_{\varphi(1,1,0)\times\varphi(1,1,0)[10]}(100)$$
deutero-pentacthulcross E100#^^^##*#^^^##100 $$f_{\varphi(1,1,0)^2}(100)$$
trito-pentacthulcross E100#^^^##*#^^^##*#^^^##100 $$f_{\varphi(1,1,0)^3}(100)$$
teterto-pentacthulcross E100#^^^##*#^^^##*#^^^##*#^^^##100

= E100(#^^^##)^#4

$$f_{\varphi(1,1,0)^4}(100)$$
pepto-pentacthulcross E100(#^^^##)^#5 $$f_{\varphi(1,1,0)^5}(100)$$
exto-pentacthulcross E100(#^^^##)^#6 $$f_{\varphi(1,1,0)^6}(100)$$
epto-pentacthulcross E100(#^^^##)^#7 $$f_{\varphi(1,1,0)^7}(100)$$
ogdo-pentacthulcross E100(#^^^##)^#8 $$f_{\varphi(1,1,0)^8}(100)$$
ento-pentacthulcross E100(#^^^##)^#9 $$f_{\varphi(1,1,0)^9}(100)$$
dekato-pentacthulcross E100(#^^^##)^#10 $$f_{\varphi(1,1,0)^{10}}(100)$$
pentacthulcruxifact E100(#^^^##)^#100 $$f_{\varphi(1,1,0)^\omega}(100)$$
quadratapentacthulcross E100(#^^^##)^##100 $$f_{\varphi(1,1,0)^{\omega^2}}(100)$$
kubikupentacthulcross E100(#^^^##)^###100 $$f_{\varphi(1,1,0)^{\omega^3}}(100)$$
quarticupentacthulcross E100(#^^^##)^####100 $$f_{\varphi(1,1,0)^{\omega^4}}(100)$$
quinticupentacthulcross E100((#^^^##)^#^5)100 $$f_{\varphi(1,1,0)^{\omega^5}}(100)$$
sexticupentacthulcross E100((#^^^##)^#^6)100 $$f_{\varphi(1,1,0)^{\omega^6}}(100)$$
septicupentacthulcross E100((#^^^##)^#^7)100 $$f_{\varphi(1,1,0)^{\omega^7}}(100)$$
octicupentacthulcross E100((#^^^##)^#^8)100 $$f_{\varphi(1,1,0)^{\omega^8}}(100)$$
nonicupentacthulcross E100((#^^^##)^#^9)100 $$f_{\varphi(1,1,0)^{\omega^9}}(100)$$
decicupentacthulcross E100((#^^^##)^#^10)100 $$f_{\varphi(1,1,0)^{\omega^{10}}}(100)$$
pentacthulcross-ipso-godgahlah E100(#^^^##)^#^#100 $$f_{\varphi(1,1,0)^{\omega^{\omega}}}(100)$$
pentacthulcross-ipso-tethrathoth E100(#^^^##)^#^^#100 $$f_{\varphi(1,1,0)^{\varepsilon_0}}(100)$$
pentacthulcross-ipso-tethracross E100(#^^^##)^#^^##100 $$f_{\varphi(1,1,0)^{\zeta_0}}(100)$$
pentacthulcross-ipso-tethracubor E100(#^^^##)^#^^###100 $$f_{\varphi(1,1,0)^{\eta_0}}(100)$$
pentacthulcross-ipso-tethrateron E100(#^^^##)^#^^####100 $$f_{\varphi(1,1,0)^{\varphi(4,0)}}(100)$$
pentacthulcross-ipso-tethrapeton E100(#^^^##)^(#^^#^5)100 $$f_{\varphi(1,1,0)^{\varphi(5,0)}}(100)$$
pentacthulcross-ipso-tethrahexon E100(#^^^##)^(#^^#^6)100 $$f_{\varphi(1,1,0)^{\varphi(6,0)}}(100)$$
pentacthulcross-ipso-tethrahepton E100(#^^^##)^(#^^#^7)100 $$f_{\varphi(1,1,0)^{\varphi(7,0)}}(100)$$
pentacthulcross-ipso-tethra-ogdon E100(#^^^##)^(#^^#^8)100 $$f_{\varphi(1,1,0)^{\varphi(8,0)}}(100)$$
pentacthulcross-ipso-tethrennon E100(#^^^##)^(#^^#^9)100 $$f_{\varphi(1,1,0)^{\varphi(9,0)}}(100)$$
pentacthulcross-ipso-tethradekon E100(#^^^##)^(#^^#^10)100 $$f_{\varphi(1,1,0)^{\varphi(10,0)}}(100)$$
pentacthulcross-ipso-tethratope E100(#^^^##)^#^^#^#100 $$f_{\varphi(1,1,0)^{\varphi(\omega,0)}}(100)$$
pentacthulcross-ipso-tethrarxitri E100(#^^^##)^#^^#^^#100 $$f_{\varphi(1,1,0)^{\varphi(\varepsilon_0,0)}}(100)$$
pentacthulcross-ipso-tethrarxitet E100(#^^^##)^#^^#^^#^^#100 $$f_{\varphi(1,1,0)^{\varphi(\varphi(\varepsilon_0,0),0)}}(100)$$
pentacthulcross-ipso-tethrarxipent E100(#^^^##)^#^^^#5 $$f_{\varphi(1,1,0)^{\Gamma_0[5]}}(100)$$
pentacthulcross-ipso-tethrarxihex E100(#^^^##)^#^^^#6 $$f_{\varphi(1,1,0)^{\Gamma_0[6]}}(100)$$
pentacthulcross-ipso-tethrarxihept E100(#^^^##)^#^^^#7 $$f_{\varphi(1,1,0)^{\Gamma_0[7]}}(100)$$
pentacthulcross-ipso-tethrarxi-ogd E100(#^^^##)^#^^^#8 $$f_{\varphi(1,1,0)^{\Gamma_0[8]}}(100)$$
pentacthulcross-ipso-tethrarxi-enn E100(#^^^##)^#^^^#9 $$f_{\varphi(1,1,0)^{\Gamma_0[9]}}(100)$$
pentacthulcross-ipso-tethrarxideck E100(#^^^##)^#^^^#10 $$f_{\varphi(1,1,0)^{\Gamma_0[10]}}(100)$$
pentacthulcross-ipso-pentacthulhum E100(#^^^##)^#^^^#100 $$f_{\varphi(1,1,0)^{\Gamma_0}}(100)$$
pentacthulcross-ipso-dustaculated-pentacthulhum E100(#^^^##)^#^^^#>#^^^#100 $$f_{\varphi(1,1,0)^{\Gamma_{\Gamma_0}}}(100)$$
pentacthulcross-ipso-tristaculated-pentacthulhum E100(#^^^##)^#^^^#>#^^^#>#^^^#100 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[3]}}(100)$$
pentacthulcross-ipso-tetrastaculated-pentacthulhum E100(#^^^##)^#^^^#>#^^^#>#^^^#>#^^^#100

= E100(#^^^##)^(#^^^##)4

$$f_{\varphi(1,1,0)^{\varphi(1,1,0)[4]}}(100)$$
pentacthulcross-ipso-pentastaculated-pentacthulhum E100(#^^^##)^(#^^^##)5 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[5]}}(100)$$
pentacthulcross-ipso-hexastaculated-pentacthulhum E100(#^^^##)^(#^^^##)6 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[6]}}(100)$$
pentacthulcross-ipso-heptastaculated-pentacthulhum E100(#^^^##)^(#^^^##)7 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[7]}}(100)$$
pentacthulcross-ipso-ogdastaculated-pentacthulhum E100(#^^^##)^(#^^^##)8 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[8]}}(100)$$
pentacthulcross-ipso-ennastaculated-pentacthulhum E100(#^^^##)^(#^^^##)9 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[9]}}(100)$$
pentacthulcross-ipso-dekastaculated-pentacthulhum E100(#^^^##)^(#^^^##)10 $$f_{\varphi(1,1,0)^{\varphi(1,1,0)[10]}}(100)$$
dutetrated-pentacthulcross E100(#^^^##)^(#^^^##)100 $$f_{\varphi(1,1,0)\uparrow\uparrow 2}(100)$$
tritetrated-pentacthulcross E100(#^^^##)^(#^^^##)^(#^^^##)100 $$f_{\varphi(1,1,0)\uparrow\uparrow 3}(100)$$

= E100(#^^^##)^^#4

$$f_{\varphi(1,1,0)\uparrow\uparrow 4}(100)$$
quinquatetrated-pentacthulcross E100(#^^^##)^^#5 $$f_{\varphi(1,1,0)\uparrow\uparrow 5}(100)$$
sexatetrated-pentacthulcross E100(#^^^##)^^#6 $$f_{\varphi(1,1,0)\uparrow\uparrow 6}(100)$$
septatetrated-pentacthulcross E100(#^^^##)^^#7 $$f_{\varphi(1,1,0)\uparrow\uparrow 7}(100)$$
octatetrated-pentacthulcross E100(#^^^##)^^#8 $$f_{\varphi(1,1,0)\uparrow\uparrow 8}(100)$$
nonatetrated-pentacthulcross E100(#^^^##)^^#9 $$f_{\varphi(1,1,0)\uparrow\uparrow 9}(100)$$
decatetrated-pentacthulcross E100(#^^^##)^^#10 $$f_{\varphi(1,1,0)\uparrow\uparrow 10}(100)$$
terrible pentacthulcross E100(#^^^##)^^#100 $$f_{\varepsilon_{\varphi(1,1,0)+1}}(100)$$
terrisquared pentacthulcross E100(#^^^##)^^##100 $$f_{\zeta_{\varphi(1,1,0)+1}}(100)$$
terricubed pentacthulcross E100(#^^^##)^^###100 $$f_{\eta_{\varphi(1,1,0)+1}}(100)$$
territesserated pentacthulcross E100(#^^^##)^^####100 $$f_{\varphi(4,\varphi(1,1,0)+1)}(100)$$
terripenterated pentacthulcross E100(#^^^##)^^(#^5)100 $$f_{\varphi(5,\varphi(1,1,0)+1)}(100)$$
terrihexerated pentacthulcross E100(#^^^##)^^(#^6)100 $$f_{\varphi(6,\varphi(1,1,0)+1)}(100)$$
terrihepterated pentacthulcross E100(#^^^##)^^(#^7)100 $$f_{\varphi(7,\varphi(1,1,0)+1)}(100)$$
terriocterated pentacthulcross E100(#^^^##)^^(#^8)100 $$f_{\varphi(8,\varphi(1,1,0)+1)}(100)$$
terriennerated pentacthulcross E100(#^^^##)^^(#^9)100 $$f_{\varphi(9,\varphi(1,1,0)+1)}(100)$$
terridekerated pentacthulcross E100(#^^^##)^^(#^10)100 $$f_{\varphi(10,\varphi(1,1,0)+1)}(100)$$
territoped pentacthulcross E100(#^^^##)^^#^#100

= E100(#^^^##)^^(#^100)100

$$f_{\varphi(\omega,\varphi(1,1,0)+1)}(100)$$
grand territoped pentacthulcross = E100(#^^^##)^^#^#100#2 E100(#^^^##)^^(#^territoped pentacthulcross)100 $$f_{\varphi(4,\varphi(1,1,0)+1)}^2(100)$$
tethrathothitetrated pentacthulcross E100(#^^^##)^^#^^#100 $$f_{\varphi(\varepsilon_0,\varphi(1,1,0)+1)}(100)$$
pentacthulhutetrated pentacthulcross E100(#^^^##)^^#^^^#100 $$f_{\varphi(\Gamma_0,\varphi(1,1,0)+1)}(100)$$
dupentated pentacthulcross E100(#^^^##)^^(#^^^##)100 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[1]}(100)$$
tripentated pentacthulcross E100(#^^^##)^^(#^^^##)^^(#^^^##)100 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[2]}(100)$$

= E100(#^^^##)^^^#4

$$f_{\varphi(1,0,\varphi(1,1,0)+1)[3]}(100)$$
quinquapentated pentacthulcross E100(#^^^##)^^^#5 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[4]}(100)$$
sexapentated pentacthulcross E100(#^^^##)^^^#6 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[5]}(100)$$
septapentated pentacthulcross E100(#^^^##)^^^#7 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[6]}(100)$$
octapentated pentacthulcross E100(#^^^##)^^^#8 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[7]}(100)$$
nonapentated pentacthulcross E100(#^^^##)^^^#9 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[8]}(100)$$
decapentated pentacthulcross E100(#^^^##)^^^#10 $$f_{\varphi(1,0,\varphi(1,1,0)+1)[9]}(100)$$
horrible pentacthulcross E100(#^^^##)^^^#100 $$f_{\varphi(1,0,\varphi(1,1,0)+1)}(100)$$
horriterated pentacthulcross E100(#^^^##)^^^#>#100 $$f_{\varphi(1,0,\varphi(1,1,0)+\omega)}(100)$$
dustaculated horripentacthulcross E100(#^^^##)^^^#>(#^^^##)^^^#100 $$f_{\varphi(1,0,\varphi(1,0,\varphi(1,1,0)+1))}(100)$$
pentacthulducross E100(#^^^##)^^^##100 $$f_{\varphi(1,1,1)}(100)$$
pentacthultricross E100((#^^^##)^^^##)^^^##100 $$f_{\varphi(1,1,2)}(100)$$
pentacthultetracross E100(((#^^^##)^^^##)^^^##)^^^##100 $$f_{\varphi(1,1,3)}(100)$$
pentacthulpentacross E100#^^^##>#5 $$f_{\varphi(1,1,4)}(100)$$
pentacthulhexacross E100#^^^##>#6 $$f_{\varphi(1,1,5)}(100)$$
pentacthulheptacross E100#^^^##>#7 $$f_{\varphi(1,1,6)}(100)$$
pentacthuloctacross E100#^^^##>#8 $$f_{\varphi(1,1,7)}(100)$$
pentacthulennacross E100#^^^##>#9 $$f_{\varphi(1,1,8)}(100)$$
pentacthuldekacross E100#^^^##>#10 $$f_{\varphi(1,1,9)}(100)$$
pentacthulendekacross E100#^^^##>#11 $$f_{\varphi(1,1,10)}(100)$$
pentacthuldodekacross E100#^^^##>#12 $$f_{\varphi(1,1,11)}(100)$$
pentacthul-icosacross E100#^^^##>#20 $$f_{\varphi(1,1,19)}(100)$$
pentacthulitercross E100#^^^##>#100 $$f_{\varphi(1,1,\omega)}(100)$$
godgahlah-turreted-pentacthulcross E100#^^^##>#^#100 $$f_{\varphi(1,1,\omega^\omega)}(100)$$
tethrathoth-turreted-pentacthulcross E100#^^^##>#^^#100 $$f_{\varphi(1,1,\varepsilon_0)}(100)$$
tethracross-turreted-pentacthulcross E100#^^^##>#^^##100 $$f_{\varphi(1,1,\zeta_0)}(100)$$
tethracubor-turreted-pentacthulcross E100#^^^##>#^^###100 $$f_{\varphi(1,1,\eta_0)}(100)$$
tethrateron-turreted-pentacthulcross E100#^^^##>#^^####100 $$f_{\varphi(1,1,\varphi(4,0))}(100)$$
tethrapeton-turreted-pentacthulcross E100#^^^##>(#^^#^5)100 $$f_{\varphi(1,1,\varphi(5,0))}(100)$$
tethrahexon-turreted-pentacthulcross E100#^^^##>(#^^#^6)100 $$f_{\varphi(1,1,\varphi(6,0))}(100)$$
tethrahepton-turreted-pentacthulcross E100#^^^##>(#^^#^7)100 $$f_{\varphi(1,1,\varphi(7,0))}(100)$$
tethra-ogdon-turreted-pentacthulcross E100#^^^##>(#^^#^8)100 $$f_{\varphi(1,1,\varphi(8,0))}(100)$$
tethrennon-turreted-pentacthulcross E100#^^^##>(#^^#^9)100 $$f_{\varphi(1,1,\varphi(9,0))}(100)$$
tethradekon-turreted-pentacthulcross E100#^^^##>(#^^#^10)100 $$f_{\varphi(1,1,\varphi(10,0))}(100)$$
tethratope-turreted-pentacthulcross E100#^^^##>#^^#^#100 $$f_{\varphi(1,1,\varphi(\omega,0))}(100)$$
tethrarxitri-turreted-pentacthulcross E100#^^^##>#^^#^^#100 $$f_{\varphi(1,1,\varphi(\varepsilon_0,0))}(100)$$
pentacthulhum-turreted-pentacthulcross E100#^^^##>#^^^#100 $$f_{\varphi(1,1,\Gamma_0)}(100)$$
dustaculated pentacthulcross E100#^^^##>#^^^##100 $$f_{\varphi(1,1,\varphi(1,1,0))}(100)$$
tristaculated pentacthulcross E100#^^^##>#^^^##>#^^^##100 $$f_{\varphi(1,2,0)[3]}(100)$$
tetrastaculated pentacthulcross E100#^^^##>#^^^##>#^^^##>#^^^##100

= E100#^^^###4

$$f_{\varphi(1,2,0)[4]}(100)$$
pentastaculated pentacthulcross E100#^^^###5 $$f_{\varphi(1,2,0)[5]}(100)$$
hexastaculated pentacthulcross E100#^^^###6 $$f_{\varphi(1,2,0)[6]}(100)$$
heptastaculated pentacthulcross E100#^^^###7 $$f_{\varphi(1,2,0)[7]}(100)$$
ogdastaculated pentacthulcross E100#^^^###8 $$f_{\varphi(1,2,0)[8]}(100)$$
ennastaculated pentacthulcross E100#^^^###9 $$f_{\varphi(1,2,0)[9]}(100)$$
dekastaculated pentacthulcross E100#^^^###10 $$f_{\varphi(1,2,0)[10]}(100)$$
icosastaculated pentacthulcross E100#^^^###20 $$f_{\varphi(1,2,0)[20]}(100)$$
triantastaculated pentacthulcross E100#^^^###30 $$f_{\varphi(1,2,0)[30]}(100)$$
sarantastaculated pentacthulcross E100#^^^###40 $$f_{\varphi(1,2,0)[40]}(100)$$
penintastaculated pentacthulcross E100#^^^###50 $$f_{\varphi(1,2,0)[50]}(100)$$
exintastaculated pentacthulcross E100#^^^###60 $$f_{\varphi(1,2,0)[60]}(100)$$
ebdomintastaculated pentacthulcross E100#^^^###70 $$f_{\varphi(1,2,0)[70]}(100)$$
ogdontastaculated pentacthulcross E100#^^^###80 $$f_{\varphi(1,2,0)[80]}(100)$$
enenintastaculated pentacthulcross E100#^^^###90 $$f_{\varphi(1,2,0)[90]}(100)$$

## SourcesEdit

1. Sbiis Saibian, Extended Cascading-E Numbers Part III - Large Numbers