Powerexpansion refers to the function \(a\ \{\{3\}\}\ b = \{a,b,3,2\} = \underbrace{a \{\{2\}\} a \{\{2\}\} \ldots \{\{2\}\} a \{\{2\}\} a}_{\text{b a's}}\), using BEAF.[1]

In the fast-growing hierarchy, \(f_{\omega+3}(n)\) corresponds to powerexpandal growth rate.


Below is an example of pseudocode for powerexpansion.

function powerexpansion(a, b):
    return hyperexpansion(a, b, 3)

function hyperexpansion(a, b, n):
    result := a
    repeat b - 1 times:
        if n = 1:
            result := hyper(a,a,result+2)
            result := hyperexpansion(a, result, n - 1)
    return result
function hyper(a, b, n):
    if n = 1:
        return a + b
    result := a
    repeat b - 1 times:
        result := hyper(a, result, n - 1)
    return result

Sources Edit

  1. J. Bowers, Exploding Array Function

See also Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.