FANDOM


The tethrahexon regiment is a series of numbers from E100#^^#^#6 to E100#^^(#^7)90 defined using Extended Cascading-E Notation (i.e. beginning from tethrahexon and up to enenintastaculated-tethrahexon).[1] The numbers were coined by Sbiis Saibian.

List of numbers of the regiment Edit

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation) Hardy hierarchy (approximation) Slow-growing hierarchy (approximation) Bird's array notation (approximation)
tethrahexon, tethrahexeract E100#^^#^#6 \(f_{\varphi(6,0)}(100)\) \(H_{\varphi(6,0)}(100)\) \(g_{\vartheta(\varphi(6,\Omega+1))}(100)\) \(\{100,7 [1 [2 \neg 2] 2] 2\}\)
grand tethrahexon E100#^^#^(6)100#2 \(f_{\varphi(6,0)}^2(100)\) \(H_{\varphi(6,0)\times 2}(100)\)
grangol-carta-tethrahexon E100#^^#^(6)100#100 \(f_{\varphi(6,0)+1}(100)\) \(H_{\varphi(6,0)\times \omega}(100)\)
grand grangol-carta-tethrahexon E100#^^#^(6)100#100#2 \(f_{\varphi(6,0)+1}^2(100)\) \(H_{\varphi(6,0)\times \omega.2}(100)\)
godgahlah-carta-tethrahexon E100#^^#^(6)100#^#100 \(f_{\varphi(6,0)+\omega^\omega}(100)\) \(H_{\varphi(6,0)\times \omega^{\omega^\omega}}(100)\)
tethrathoth-carta-tethrahexon E100#^^#^(6)100#^^#100 \(f_{\varphi(6,0)+\varepsilon_0}(100)\) \(H_{\varphi(6,0)\times \varepsilon_0}(100)\)
tethracross-carta-tethrahexon E100#^^#^(6)100#^^##100 \(f_{\varphi(6,0)+\zeta_0}(100)\) \(H_{\varphi(6,0)\times \zeta_0}(100)\)
tethracubor-carta-tethrahexon E100#^^#^(6)100#^^###100 \(f_{\varphi(6,0)+\eta_0}(100)\) \(H_{\varphi(6,0)\times \eta_0}(100)\)
tethrateron-carta-tethrahexon E100#^^#^(6)100#^^####100 \(f_{\varphi(6,0)+\varphi(4,0)}(100)\) \(H_{\varphi(6,0)\times \varphi(4,0)}(100)\)
tethrapeton-carta-tethrahexon E100#^^#^(6)100#^^#^(5)100 \(f_{\varphi(6,0)+\varphi(5,0)}(100)\) \(H_{\varphi(6,0)\times \varphi(5,0)}(100)\)
tethrahexon-by-deuteron E100#^^#^(6)100#^^#^(6)100 \(f_{\varphi(6,0)+\varphi(6,0)}(100)\) \(H_{\varphi(6,0)\times \varphi(6,0)}(100)\)
tethrahexon-by-triton E100#^^#^(6)100#^^#^(6)100#^^#^(6)100

= E100(#^^#^6)*#3

\(f_{\varphi(6,0)\times 3}(100)\) \(H_{\varphi(6,0)^3}(100)\)
tethrahexon-by-teterton E100(#^^#^6)*#4 \(f_{\varphi(6,0)\times 4}(100)\) \(H_{\varphi(6,0)^4}(100)\)
tethrahexon-by-pepton E100(#^^#^6)*#5 \(f_{\varphi(6,0)\times 5}(100)\) \(H_{\varphi(6,0)^5}(100)\)
tethrahexon-by-exton E100(#^^#^6)*#6 \(f_{\varphi(6,0)\times 6}(100)\) \(H_{\varphi(6,0)^6}(100)\)
tethrahexon-by-epton E100(#^^#^6)*#7 \(f_{\varphi(6,0)\times 7}(100)\) \(H_{\varphi(6,0)^7}(100)\)
tethrahexon-by-ogdon E100(#^^#^6)*#8 \(f_{\varphi(6,0)\times 8}(100)\) \(H_{\varphi(6,0)^8}(100)\)
tethrahexon-by-enton E100(#^^#^6)*#9 \(f_{\varphi(6,0)\times 9}(100)\) \(H_{\varphi(6,0)^9}(100)\)
tethrahexon-by-dekaton E100(#^^#^6)*#10 \(f_{\varphi(6,0)\times 10}(100)\) \(H_{\varphi(6,0)^{10}}(100)\)
tethrahexon-by-hyperion E100(#^^#^6)*#100 \(f_{\varphi(6,0)\times\omega}(100)\) \(H_{\varphi(6,0)^\omega}(100)\)
tethrahexon-by-godgahlah E100(#^^#^6)*#^#100 \(f_{\varphi(6,0)\times\omega^\omega}(100)\) \(H_{\varphi(6,0)^{\omega^\omega}}(100)\)
tethrahexon-by-tethrathoth E100(#^^#^6)*#^^#100 \(f_{\varphi(6,0)\times\varepsilon_0}(100)\) \(H_{\varphi(6,0)^{\varepsilon_0}}(100)\)
tethrahexon-by-tethracross E100(#^^#^6)*#^^##100 \(f_{\varphi(6,0)\times\zeta_0}(100)\) \(H_{\varphi(6,0)^{\zeta_0}}(100)\)
tethrahexon-by-tethracubor E100(#^^#^6)*#^^###100 \(f_{\varphi(6,0)\times\eta_0}(100)\) \(H_{\varphi(6,0)^{\eta_0}}(100)\)
tethrahexon-by-tethrateron E100(#^^#^6)*#^^####100 \(f_{\varphi(6,0)\times\varphi(4,0)}(100)\) \(H_{\varphi(6,0)^{\varphi(4,0)}}(100)\)
tethrahexon-by-tethrapeton E100(#^^#^6)*(#^^#^5)100 \(f_{\varphi(6,0)\times\varphi(5,0)}(100)\) \(H_{\varphi(6,0)^{\varphi(5,0)}}(100)\)
deutero-tethrahexon E100#^^#^(6)*#^^#^(6)100 \(f_{\varphi(6,0)^2}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)}}(100)\)
trito-tethrahexon E100#^^#^(6)*#^^#^(6)*#^^#^(6)100

=E100(#^^#^6)^#3

\(f_{\varphi(6,0)^3}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^2}}(100)\)
teterto-tethrahexon E100(#^^#^6)^#4 \(f_{\varphi(6,0)^4}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^3}}(100)\)
pepto-tethrahexon E100(#^^#^6)^#5 \(f_{\varphi(6,0)^5}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^4}}(100)\)
exto-tethrahexon E100(#^^#^6)^#6 \(f_{\varphi(6,0)^6}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^5}}(100)\)
epto-tethrahexon E100(#^^#^6)^#7 \(f_{\varphi(6,0)^7}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^6}}(100)\)
ogdo-tethrahexon E100(#^^#^6)^#8 \(f_{\varphi(6,0)^8}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^7}}(100)\)
ento-tethrahexon E100(#^^#^6)^#9 \(f_{\varphi(6,0)^9}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^8}}(100)\)
dekato-tethrahexon E100(#^^#^6)^#10 \(f_{\varphi(6,0)^{10}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^9}}(100)\)
tethrahexonifact E100(#^^#^6)^#100 \(f_{\varphi(6,0)^\omega}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^\omega}}(100)\)
quadratatethrahexon E100(#^^#^6)^##100 \(f_{\varphi(6,0)^{\omega^2}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^2}}}(100)\)
kubikutethrahexon E100(#^^#^6)^###100 \(f_{\varphi(6,0)^{\omega^3}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^3}}}(100)\)
quarticutethrahexon E100(#^^#^6)^####100 \(f_{\varphi(6,0)^{\omega^4}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^4}}}(100)\)
quinticutethrahexon E100(#^^#^6)^#^#5 \(f_{\varphi(6,0)^{\omega^5}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^5}}}(100)\)
sexticutethrahexon E100(#^^#^6)^#^#6 \(f_{\varphi(6,0)^{\omega^6}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^6}}}(100)\)
septicutethrahexon E100(#^^#^6)^#^#7 \(f_{\varphi(6,0)^{\omega^7}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^7}}}(100)\)
octicutethrahexon E100(#^^#^6)^#^#8 \(f_{\varphi(6,0)^{\omega^8}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^8}}}(100)\)
nonicutethrahexon E100(#^^#^6)^#^#9 \(f_{\varphi(6,0)^{\omega^9}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^9}}}(100)\)
decicutethrahexon E100(#^^#^6)^#^#10 \(f_{\varphi(6,0)^{\omega^{10}}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^{10}}}}(100)\)
tethrahexon-ipso-godgahlah E100(#^^#^6)^#^#100 \(f_{\varphi(6,0)^{\omega^\omega}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^\omega}}}(100)\)
tethrahexon-ipso-godgathor E100(#^^#^6)^#^#^#100 \(f_{\varphi(6,0)^{\omega^{\omega^\omega}}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^{\omega^\omega}}}}(100)\)
tethrahexon-ipso-godtothol E100(#^^#^6)^#^#^#^#100 \(f_{\varphi(6,0)^{\omega^{\omega^{\omega^\omega}}}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^{\omega^{\omega^\omega}}}}}(100)\)
tethrahexon-ipso-tethrathoth E100(#^^#^6)^#^^#100 \(f_{\varphi(6,0)^{\varepsilon_0}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varepsilon_0}}}(100)\)
tethrahexon-ipso-tethracross E100(#^^#^6)^#^^##100 \(f_{\varphi(6,0)^{\zeta_0}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\zeta_0}}}(100)\)
tethrahexon-ipso-tethracubor E100(#^^#^6)^#^^###100 \(f_{\varphi(6,0)^{\eta_0}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\eta_0}}}(100)\)
tethrahexon-ipso-tethrateron E100(#^^#^6)^#^^####100 \(f_{\varphi(6,0)^{\varphi(4,0)}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varphi(4,0)}}}(100)\)
tethrahexon-ipso-tethrapeton E100(#^^#^6)^#^^#^(5)100 \(f_{\varphi(6,0)^{\varphi(5,0)}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varphi(5,0)}}}(100)\)
dutetrated-tethrahexon E100(#^^#^6)^(#^^#^6)100 \(f_{\varphi(6,0)^{\varphi(6,0)}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varphi(6,0)}}}(100)\)
tritetrated-tethrahexon E100(#^^#^6)^(#^^#^6)^(#^^#^6)100

= E100(#^^#^6)^^#3

\(f_{\varphi(6,0)\uparrow\uparrow 3}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 4}(100)\)
quadratetrated-tethrahexon E100(#^^#^6)^^#4 \(f_{\varphi(6,0)\uparrow\uparrow 4}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 5}(100)\)
quinquatetrated-tethrahexon E100(#^^#^6)^^#5 \(f_{\varphi(6,0)\uparrow\uparrow 5}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 6}(100)\)
sexatetrated-tethrahexon E100(#^^#^6)^^#6 \(f_{\varphi(6,0)\uparrow\uparrow 6}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 7}(100)\)
septatetrated-tethrahexon E100(#^^#^6)^^#7 \(f_{\varphi(6,0)\uparrow\uparrow 7}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 8}(100)\)
octatetrated-tethrahexon E100(#^^#^6)^^#8 \(f_{\varphi(6,0)\uparrow\uparrow 8}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 9}(100)\)
nonatetrated-tethrahexon E100(#^^#^6)^^#9 \(f_{\varphi(6,0)\uparrow\uparrow 9}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 10}(100)\)
decatetrated-tethrahexon E100(#^^#^6)^^#10 \(f_{\varphi(6,0)\uparrow\uparrow 10}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 11}(100)\)
terrible tethrahexon E100(#^^#^6)^^#100 \(f_{\varepsilon_{\varphi(6,0)+1}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+1}}(100)\)
terrible terrible tethrahexon E100((#^^#^6)^^#)^^#100 \(f_{\varepsilon_{\varphi(6,0)+2}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+2}}(100)\)
three-ex-terrible tethrahexon E100(#^^#^6)^^#>(3)100 \(f_{\varepsilon_{\varphi(6,0)+3}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+3}}(100)\)
four-ex-terrible tethrahexon E100(#^^#^6)^^#>(4)100 \(f_{\varepsilon_{\varphi(6,0)+4}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+4}}(100)\)
five-ex-terrible tethrahexon E100(#^^#^6)^^#>(5)100 \(f_{\varepsilon_{\varphi(6,0)+5}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+4}}(100)\)
six-ex-terrible tethrahexon E100(#^^#^6)^^#>(6)100 \(f_{\varepsilon_{\varphi(6,0)+6}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+6}}(100)\)
seven-ex-terrible tethrahexon E100(#^^#^6)^^#>(7)100 \(f_{\varepsilon_{\varphi(6,0)+7}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+7}}(100)\)
eight-ex-terrible tethrahexon E100(#^^#^6)^^#>(8)100 \(f_{\varepsilon_{\varphi(6,0)+8}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+8}}(100)\)
nine-ex-terrible tethrahexon E100(#^^#^6)^^#>(9)100 \(f_{\varepsilon_{\varphi(6,0)+9}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+9}}(100)\)
ten-ex-terrible tethrahexon E100(#^^#^6)^^#>(10)100 \(f_{\varepsilon_{\varphi(6,0)+10}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+10}}(100)\)
territerated tethrahexon E100(#^^#^6)^^#>#100 \(f_{\varepsilon_{\varphi(6,0)+\omega}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\omega}}(100)\)
godgahlah-turreted-territethrahexon E100(#^^#^6)^^#>#^#100 \(f_{\varepsilon_{\varphi(6,0)+\omega^\omega}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-territethrahexon E100(#^^#^6)^^#>#^^#100 \(f_{\varepsilon_{\varphi(6,0)+\varepsilon_0}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varepsilon_0}}(100)\)
tethracross-turreted-territethrahexon E100(#^^#^6)^^#>#^^##100 \(f_{\varepsilon_{\varphi(6,0)+\zeta_0}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\zeta_0}}(100)\)
tethracubor-turreted-territethrahexon E100(#^^#^6)^^#>#^^###100 \(f_{\varepsilon_{\varphi(6,0)+\eta_0}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\eta_0}}(100)\)
tethrateron-turreted-territethrahexon E100(#^^#^6)^^#>#^^####100 \(f_{\varepsilon_{\varphi(6,0)+\varphi(4,0)}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-territethrahexon E100(#^^#^6)^^#>(#^^#^5)100 \(f_{\varepsilon_{\varphi(6,0)+\varphi(5,0)}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-territethrahexon E100(#^^#^6)^^#>(#^^#^6)100 \(f_{\varepsilon_{\varphi(6,0)+\varphi(6,0)}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varphi(6,0)}}(100)\)
dustaculated-territethrahexon E100(#^^#^6)^^#>(#^^#^6)^^#100 \(f_{\varepsilon_{\varphi(6,0)+\varepsilon_{\varphi(6,0)+1}}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varepsilon_{\varphi(6,0)+1}}}(100)\)
tristaculated-territethrahexon E100(#^^#^6)^^#>(#^^#^6)^^#>(#^^#^6)^^#100

= E100(#^^#^6)^^##3

\(f_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(6,0)+1}}}}(100)\) \(H_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(6,0)+1}}}}(100)\)
tetrastaculated-territethrahexon E100(#^^#^6)^^##4 \(f_{\zeta_{\varphi(6,0)+1}[4]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[4]}(100)\)
pentastaculated-territethrahexon E100(#^^#^6)^^##5 \(f_{\zeta_{\varphi(6,0)+1}[5]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[5]}(100)\)
hexastaculated-territethrahexon E100(#^^#^6)^^##6 \(f_{\zeta_{\varphi(6,0)+1}[6]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[6]}(100)\)
heptastaculated-territethrahexon E100(#^^#^6)^^##7 \(f_{\zeta_{\varphi(6,0)+1}[7]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[7]}(100)\)
ogdastaculated-territethrahexon E100(#^^#^6)^^##8 \(f_{\zeta_{\varphi(6,0)+1}[8]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[8]}(100)\)
ennastaculated-territethrahexon E100(#^^#^6)^^##9 \(f_{\zeta_{\varphi(6,0)+1}[9]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[9]}(100)\)
dekastaculated-territethrahexon E100(#^^#^6)^^##10 \(f_{\zeta_{\varphi(6,0)+1}[10]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[10]}(100)\)
terrisquared-tethrahexon E100(#^^#^6)^^##100 \(f_{\zeta_{\varphi(6,0)+1}}(100)\) \(H_{\zeta_{\varphi(6,0)+1}}(100)\)
two-ex-terrisquared-tethrahexon E100((#^^#^6)^^##)^^##100 \(f_{\zeta_{\varphi(6,0)+2}}(100)\) \(H_{\zeta_{\varphi(6,0)+2}}(100)\)
three-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(3)100 \(f_{\zeta_{\varphi(6,0)+3}}(100)\) \(H_{\zeta_{\varphi(6,0)+3}}(100)\)
four-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(4)100 \(f_{\zeta_{\varphi(6,0)+4}}(100)\) \(H_{\zeta_{\varphi(6,0)+4}}(100)\)
five-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(5)100 \(f_{\zeta_{\varphi(6,0)+5}}(100)\) \(H_{\zeta_{\varphi(6,0)+5}}(100)\)
six-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(6)100 \(f_{\zeta_{\varphi(6,0)+6}}(100)\) \(H_{\zeta_{\varphi(6,0)+6}}(100)\)
seven-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(7)100 \(f_{\zeta_{\varphi(6,0)+7}}(100)\) \(H_{\zeta_{\varphi(6,0)+7}}(100)\)
eight-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(8)100 \(f_{\zeta_{\varphi(6,0)+8}}(100)\) \(H_{\zeta_{\varphi(6,0)+8}}(100)\)
nine-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(9)100 \(f_{\zeta_{\varphi(6,0)+9}}(100)\) \(H_{\zeta_{\varphi(6,0)+9}}(100)\)
ten-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(10)100 \(f_{\zeta_{\varphi(6,0)+10}}(100)\) \(H_{\zeta_{\varphi(6,0)+10}}(100)\)
hundred-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>#100 \(f_{\zeta_{\varphi(6,0)+\omega}}(100)\) \(H_{\zeta_{\varphi(6,0)+\omega}}(100)\)
godgahlah-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^#100 \(f_{\zeta_{\varphi(6,0)+\omega^\omega}}(100)\) \(H_{\zeta_{\varphi(6,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^#100 \(f_{\zeta_{\varphi(6,0)+\varepsilon_0}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varepsilon_0}}(100)\)
tethracross-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^##100 \(f_{\zeta_{\varphi(6,0)+\zeta_0}}(100)\) \(H_{\zeta_{\varphi(6,0)+\zeta_0}}(100)\)
tethracubor-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^###100 \(f_{\zeta_{\varphi(6,0)+\eta_0}}(100)\) \(H_{\zeta_{\varphi(6,0)+\eta_0}}(100)\)
tethrateron-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^####100 \(f_{\zeta_{\varphi(6,0)+\varphi(4,0)}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^5)100 \(f_{\zeta_{\varphi(6,0)+\varphi(5,0)}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)100 \(f_{\zeta_{\varphi(6,0)+\varphi(6,0)}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varphi(6,0)}}(100)\)
dustaculated-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)^^##100 \(f_{\zeta_{\varphi(6,0)+\zeta_{\varphi(6,0)+1}}}(100)\) \(H_{\zeta_{\varphi(6,0)+\zeta_{\varphi(6,0)+1}}}(100)\)
tristaculated-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)^^##>(#^^#^6)^^##100 \(f_{\zeta_{\zeta_{\zeta_{\varphi(6,0)+1}}}}(100)\) \(H_{\zeta_{\zeta_{\zeta_{\varphi(6,0)+1}}}}(100)\)
tetrastaculated-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)^^##>(#^^#^6)^^##>(#^^#^6)^^##100

= E100(#^^#^6)^^###4

\(f_{\eta_{\varphi(6,0)+1}[4]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[4]}(100)\)
pentastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###5 \(f_{\eta_{\varphi(6,0)+1}[5]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[5]}(100)\)
hexastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###6 \(f_{\eta_{\varphi(6,0)+1}[6]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[6]}(100)\)
heptastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###7 \(f_{\eta_{\varphi(6,0)+1}[7]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[7]}(100)\)
ogdastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###8 \(f_{\eta_{\varphi(6,0)+1}[8]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[8]}(100)\)
ennastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###9 \(f_{\eta_{\varphi(6,0)+1}[9]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[9]}(100)\)
dekastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###10 \(f_{\eta_{\varphi(6,0)+1}[10]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[10]}(100)\)
terricubed-tethrahexon E100(#^^#^6)^^###100 \(f_{\eta_{\varphi(6,0)+1}}(100)\) \(H_{\eta_{\varphi(6,0)+1}}(100)\)
two-ex-terricubed-tethrahexon E100((#^^#^6)^^###)^^###100 \(f_{\eta_{\varphi(6,0)+2}}(100)\) \(H_{\eta_{\varphi(6,0)+2}}(100)\)
three-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(3)100 \(f_{\eta_{\varphi(6,0)+3}}(100)\) \(H_{\eta_{\varphi(6,0)+3}}(100)\)
four-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(4)100 \(f_{\eta_{\varphi(6,0)+4}}(100)\) \(H_{\eta_{\varphi(6,0)+4}}(100)\)
five-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(5)100 \(f_{\eta_{\varphi(6,0)+5}}(100)\) \(H_{\eta_{\varphi(6,0)+5}}(100)\)
six-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(6)100 \(f_{\eta_{\varphi(6,0)+6}}(100)\) \(H_{\eta_{\varphi(6,0)+6}}(100)\)
seven-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(7)100 \(f_{\eta_{\varphi(6,0)+7}}(100)\) \(H_{\eta_{\varphi(6,0)+7}}(100)\)
eight-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(8)100 \(f_{\eta_{\varphi(6,0)+8}}(100)\) \(H_{\eta_{\varphi(6,0)+8}}(100)\)
nine-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(9)100 \(f_{\eta_{\varphi(6,0)+9}}(100)\) \(H_{\eta_{\varphi(6,0)+9}}(100)\)
ten-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(10)100 \(f_{\eta_{\varphi(6,0)+10}}(100)\) \(H_{\eta_{\varphi(6,0)+10}}(100)\)
hundred-ex-terricubed-tethrahexon E100(#^^#^6)^^###>#100 \(f_{\eta_{\varphi(6,0)+\omega}}(100)\) \(H_{\eta_{\varphi(6,0)+\omega}}(100)\)
godgahlah-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^#100 \(f_{\eta_{\varphi(6,0)+\omega^\omega}}(100)\) \(H_{\eta_{\varphi(6,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^#100 \(f_{\eta_{\varphi(6,0)+\varepsilon_0}}(100)\) \(H_{\eta_{\varphi(6,0)+\varepsilon_0}}(100)\)
tethracross-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^##100 \(f_{\eta_{\varphi(6,0)+\zeta_0}}(100)\) \(H_{\eta_{\varphi(6,0)+\zeta_0}}(100)\)
tethracubor-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^###100 \(f_{\eta_{\varphi(6,0)+\eta_0}}(100)\) \(H_{\eta_{\varphi(6,0)+\eta_0}}(100)\)
tethrateron-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^####100 \(f_{\eta_{\varphi(6,0)+\varphi(4,0)}}(100)\) \(H_{\eta_{\varphi(6,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^5)100 \(f_{\eta_{\varphi(6,0)+\varphi(5,0)}}(100)\) \(H_{\eta_{\varphi(6,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)100 \(f_{\eta_{\varphi(6,0)+\varphi(6,0)}}(100)\) \(H_{\eta_{\varphi(6,0)+\varphi(6,0)}}(100)\)
dustaculated-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)^^###100 \(f_{\eta_{\eta_{\varphi(6,0)+1}}}(100)\) \(H_{\eta_{\eta_{\varphi(6,0)+1}}}(100)\)
tristaculated-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)^^###>(#^^#^6)^^###100 \(f_{\eta_{\eta_{\eta_{\varphi(6,0)+1}}}}(100)\) \(H_{\eta_{\eta_{\eta_{\varphi(6,0)+1}}}}(100)\)
tetrastaculated-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)^^###>(#^^#^6)^^###>(#^^#^6)^^###100

= E100(#^^#^6)^^####4

\(f_{\varphi(4,\varphi(6,0)+1)[4]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[4]}(100)\)
pentastaculated-terricubed-tethrahexon E100(#^^#^6)^^####5 \(f_{\varphi(4,\varphi(6,0)+1)[5]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[5]}(100)\)
hexastaculated-terricubed-tethrahexon E100(#^^#^6)^^####6 \(f_{\varphi(4,\varphi(6,0)+1)[6]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[6]}(100)\)
heptastaculated-terricubed-tethrahexon E100(#^^#^6)^^####7 \(f_{\varphi(4,\varphi(6,0)+1)[7]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[7]}(100)\)
ogdastaculated-terricubed-tethrahexon E100(#^^#^6)^^####8 \(f_{\varphi(4,\varphi(6,0)+1)[8]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[8]}(100)\)
ennastaculated-terricubed-tethrahexon E100(#^^#^6)^^####9 \(f_{\varphi(4,\varphi(6,0)+1)[9]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[9]}(100)\)
dekastaculated-terricubed-tethrahexon E100(#^^#^6)^^####10 \(f_{\varphi(4,\varphi(6,0)+1)[10]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[10]}(100)\)
territesserated-tethrahexon E100(#^^#^6)^^####100 \(f_{\varphi(4,\varphi(6,0)+1)}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)}(100)\)
two-ex-territesserated-tethrahexon E100((#^^#^6)^^####)^^####100 \(f_{\varphi(4,\varphi(6,0)+2)}(100)\) \(H_{\varphi(4,\varphi(6,0)+2)}(100)\)
three-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(3)100 \(f_{\varphi(4,\varphi(6,0)+3)}(100)\) \(H_{\varphi(4,\varphi(6,0)+3)}(100)\)
four-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(4)100 \(f_{\varphi(4,\varphi(6,0)+4)}(100)\) \(H_{\varphi(4,\varphi(6,0)+4)}(100)\)
five-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(5)100 \(f_{\varphi(4,\varphi(6,0)+5)}(100)\) \(H_{\varphi(4,\varphi(6,0)+5)}(100)\)
six-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(6)100 \(f_{\varphi(4,\varphi(6,0)+6)}(100)\) \(H_{\varphi(4,\varphi(6,0)+6)}(100)\)
seven-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(7)100 \(f_{\varphi(4,\varphi(6,0)+7)}(100)\) \(H_{\varphi(4,\varphi(6,0)+7)}(100)\)
eight-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(8)100 \(f_{\varphi(4,\varphi(6,0)+8)}(100)\) \(H_{\varphi(4,\varphi(6,0)+8)}(100)\)
nine-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(9)100 \(f_{\varphi(4,\varphi(6,0)+9)}(100)\) \(H_{\varphi(4,\varphi(6,0)+9)}(100)\)
ten-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(10)100 \(f_{\varphi(4,\varphi(6,0)+10)}(100)\) \(H_{\varphi(4,\varphi(6,0)+10)}(100)\)
hundred-ex-territesserated-tethrahexon E100(#^^#^6)^^####>#100 \(f_{\varphi(4,\varphi(6,0)+\omega)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\omega)}(100)\)
godgahlah-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^#100 \(f_{\varphi(4,\varphi(6,0)+\omega^\omega)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^#100 \(f_{\varphi(4,\varphi(6,0)+\varepsilon_0)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varepsilon_0)}(100)\)
tethracross-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^##100 \(f_{\varphi(4,\varphi(6,0)+\zeta_0)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\zeta_0)}(100)\)
tethracubor-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^###100 \(f_{\varphi(4,\varphi(6,0)+\eta_0)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\eta_0)}(100)\)
tethrateron-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^####100 \(f_{\varphi(4,\varphi(6,0)+\varphi(4,0))}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^5)100 \(f_{\varphi(4,\varphi(6,0)+\varphi(5,0))}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^6)100 \(f_{\varphi(4,\varphi(6,0)+\varphi(6,0))}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varphi(6,0))}(100)\)
dustaculated-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^6)^^####100 \(f_{\varphi(4,\varphi(4,\varphi(6,0)+1))}(100)\) \(H_{\varphi(4,\varphi(4,\varphi(6,0)+1))}(100)\)
tristaculated-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^6)^^####>(#^^#^6)^^####100

= E100((#^^#^6)^^#^5)3

\(f_{\varphi(5,\varphi(6,0)+1)[3]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[3]}(100)\)
tetrastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)4 \(f_{\varphi(5,\varphi(6,0)+1)[4]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[4]}(100)\)
pentastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)5 \(f_{\varphi(5,\varphi(6,0)+1)[5]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[5]}(100)\)
hexastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)6 \(f_{\varphi(5,\varphi(6,0)+1)[6]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[6]}(100)\)
heptastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)7 \(f_{\varphi(5,\varphi(6,0)+1)[7]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[7]}(100)\)
ogdastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)8 \(f_{\varphi(5,\varphi(6,0)+1)[8]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[8]}(100)\)
ennastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)9 \(f_{\varphi(5,\varphi(6,0)+1)[9]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[9]}(100)\)
dekastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)10 \(f_{\varphi(5,\varphi(6,0)+1)[10]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[10]}(100)\)
terripenterated-tethrahexon E100((#^^#^6)^^#^5)100 \(f_{\varphi(5,\varphi(6,0)+1)}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)}(100)\)
two-ex-terripenterated-tethrahexon E100(((#^^#^6)^^#^5)^^#^5)100 \(f_{\varphi(5,\varphi(6,0)+2)}(100)\) \(H_{\varphi(5,\varphi(6,0)+2)}(100)\)
three-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(3)100 \(f_{\varphi(5,\varphi(6,0)+3)}(100)\) \(H_{\varphi(5,\varphi(6,0)+3)}(100)\)
four-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(4)100 \(f_{\varphi(5,\varphi(6,0)+4)}(100)\) \(H_{\varphi(5,\varphi(6,0)+4)}(100)\)
five-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(5)100 \(f_{\varphi(5,\varphi(6,0)+5)}(100)\) \(H_{\varphi(5,\varphi(6,0)+5)}(100)\)
six-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(6)100 \(f_{\varphi(5,\varphi(6,0)+6)}(100)\) \(H_{\varphi(5,\varphi(6,0)+6)}(100)\)
seven-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(7)100 \(f_{\varphi(5,\varphi(6,0)+7)}(100)\) \(H_{\varphi(5,\varphi(6,0)+7)}(100)\)
eight-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(8)100 \(f_{\varphi(5,\varphi(6,0)+8)}(100)\) \(H_{\varphi(5,\varphi(6,0)+8)}(100)\)
nine-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(9)100 \(f_{\varphi(5,\varphi(6,0)+9)}(100)\) \(H_{\varphi(5,\varphi(6,0)+9)}(100)\)
ten-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(10)100 \(f_{\varphi(5,\varphi(6,0)+10)}(100)\) \(H_{\varphi(5,\varphi(6,0)+10)}(100)\)
hundred-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#100 \(f_{\varphi(5,\varphi(6,0)+\omega)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\omega)}(100)\)
godgahlah-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^#100 \(f_{\varphi(5,\varphi(6,0)+\omega^\omega)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^#100 \(f_{\varphi(5,\varphi(6,0)+\varepsilon_0)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varepsilon_0)}(100)\)
tethracross-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^##100 \(f_{\varphi(5,\varphi(6,0)+\zeta_0)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\zeta_0)}(100)\)
tethracubor-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^###100 \(f_{\varphi(5,\varphi(6,0)+\eta_0)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\eta_0)}(100)\)
tethrateron-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^####100 \(f_{\varphi(5,\varphi(6,0)+\varphi(4,0))}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^5)100 \(f_{\varphi(5,\varphi(6,0)+\varphi(5,0))}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)100 \(f_{\varphi(5,\varphi(6,0)+\varphi(6,0))}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varphi(6,0))}(100)\)
territethrahexon-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)^^#100 \(f_{\varphi(5,\varepsilon_{\varphi(6,0)+1})}(100)\) \(H_{\varphi(5,\varepsilon_{\varphi(6,0)+1})}(100)\)
dustaculated-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)^^(#^5)100 \(f_{\varphi(6,1)[2]}(100)\) \(H_{\varphi(6,1)[2]}(100)\)
tristaculated-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)^^(#^5)>(#^^#^6)^^(#^5)100

= E100((#^^#^6)^^#^6)3

\(f_{\varphi(6,1)[3]}(100)\) \(H_{\varphi(6,1)[3]}(100)\)
tetrastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)4 \(f_{\varphi(6,1)[4]}(100)\) \(H_{\varphi(6,1)[4]}(100)\)
pentastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)5 \(f_{\varphi(6,1)[5]}(100)\) \(H_{\varphi(6,1)[5]}(100)\)
hexastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)6 \(f_{\varphi(6,1)[6]}(100)\) \(H_{\varphi(6,1)[6]}(100)\)
heptastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)7 \(f_{\varphi(6,1)[7]}(100)\) \(H_{\varphi(6,1)[7]}(100)\)
ogdastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)8 \(f_{\varphi(6,1)[8]}(100)\) \(H_{\varphi(6,1)[8]}(100)\)
ennastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)9 \(f_{\varphi(6,1)[9]}(100)\) \(H_{\varphi(6,1)[9]}(100)\)
dekastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)10 \(f_{\varphi(6,1)[10]}(100)\) \(H_{\varphi(6,1)[10]}(100)\)
tethraduhexon E100((#^^#^6)^^#^6)100 \(f_{\varphi(6,1)}(100)\) \(H_{\varphi(6,1)}(100)\)
tethratrihexon E100(((#^^#^6)^^#^6)^^#^6)100 \(f_{\varphi(6,2)}(100)\) \(H_{\varphi(6,2)}(100)\)
tethratetrahexon E100((((#^^#^6)^^#^6)^^#^6)^^#^6)100 \(f_{\varphi(6,3)}(100)\) \(H_{\varphi(6,3)}(100)\)
tethrapentahexon E100#^^(#^6)>#5 \(f_{\varphi(6,4)}(100)\) \(H_{\varphi(6,4)}(100)\)
tethrahexahexon E100#^^(#^6)>#6 \(f_{\varphi(6,5)}(100)\) \(H_{\varphi(6,5)}(100)\)
tethraheptahexon E100#^^(#^6)>#7 \(f_{\varphi(6,6)}(100)\) \(H_{\varphi(6,6)}(100)\)
tethra-octahexon E100#^^(#^6)>#8 \(f_{\varphi(6,7)}(100)\) \(H_{\varphi(6,7)}(100)\)
tethra-ennahexon E100#^^(#^6)>#9 \(f_{\varphi(6,8)}(100)\) \(H_{\varphi(6,8)}(100)\)
tethradekahexon E100#^^(#^6)>#10 \(f_{\varphi(6,9)}(100)\) \(H_{\varphi(6,9)}(100)\)
tethra-endekahexon E100#^^(#^6)>#11 \(f_{\varphi(6,10)}(100)\) \(H_{\varphi(6,10)}(100)\)
tethradodekahexon E100#^^(#^6)>#12 \(f_{\varphi(6,11)}(100)\) \(H_{\varphi(6,11)}(100)\)
tethra-icosahexon E100#^^(#^6)>#20 \(f_{\varphi(6,19)}(100)\) \(H_{\varphi(6,19)}(100)\)
tethriterhexon E100#^^(#^6)>#100 \(f_{\varphi(6,\omega)}(100)\) \(H_{\varphi(6,\omega)}(100)\)
godgahlah-turreted-tethrahexon E100#^^(#^6)>#^#100 \(f_{\varphi(6,\omega^\omega)}(100)\) \(H_{\varphi(6,\omega^\omega)}(100)\)
tethrathoth-turreted-tethrahexon E100#^^(#^6)>#^^#100 \(f_{\varphi(6,\varepsilon_0)}(100)\) \(H_{\varphi(6,\varepsilon_0)}(100)\)
tethracross-turreted-tethrahexon E100#^^(#^6)>#^^##100 \(f_{\varphi(6,\zeta_0)}(100)\) \(H_{\varphi(6,\zeta_0)}(100)\)
tethracubor-turreted-tethrahexon E100#^^(#^6)>#^^###100 \(f_{\varphi(6,\eta_0)}(100)\) \(H_{\varphi(6,\eta_0)}(100)\)
tethrateron-turreted-tethrahexon E100#^^(#^6)>#^^####100 \(f_{\varphi(6,\varphi(4,0))}(100)\) \(H_{\varphi(6,\varphi(4,0))}(100)\)
tethrapeton-turreted-tethrahexon E100#^^(#^6)>#^^(#^5)100 \(f_{\varphi(6,\varphi(5,0))}(100)\) \(H_{\varphi(6,\varphi(5,0))}(100)\)
tethrahexon-turreted-tethrahexon, dustaculated-tethrahexon E100#^^(#^6)>#^^(#^6)100 \(f_{\varphi(6,\varphi(6,0))}(100)\) \(H_{\varphi(6,\varphi(6,0))}(100)\)
tristaculated-tethrahexon E100#^^(#^6)>#^^(#^6)>#^^(#^6)100 \(f_{\varphi(6,\varphi(6,\varphi(6,0)))}(100)\) \(H_{\varphi(6,\varphi(6,\varphi(6,0)))}(100)\)
tetrastaculated-tethrahexon E100#^^(#^6)>#^^(#^6)>#^^(#^6)>#^^(#^6)100

= E100#^^(#^7)4

\(f_{\varphi(7,0)[4]}(100)\) \(H_{\varphi(7,0)[4]}(100)\)
pentastaculated-tethrahexon E100#^^(#^7)5 \(f_{\varphi(7,0)[5]}(100)\) \(H_{\varphi(7,0)[5]}(100)\)
hexastaculated-tethrahexon E100#^^(#^7)6 \(f_{\varphi(7,0)[6]}(100)\) \(H_{\varphi(7,0)[6]}(100)\)
heptastaculated-tethrahexon E100#^^(#^7)7 \(f_{\varphi(7,0)[7]}(100)\) \(H_{\varphi(7,0)[7]}(100)\)
ogdastaculated-tethrahexon E100#^^(#^7)8 \(f_{\varphi(7,0)[8]}(100)\) \(H_{\varphi(7,0)[8]}(100)\)
ennastaculated-tethrahexon E100#^^(#^7)9 \(f_{\varphi(7,0)[9]}(100)\) \(H_{\varphi(7,0)[9]}(100)\)
dekastaculated-tethrahexon E100#^^(#^7)10 \(f_{\varphi(7,0)[10]}(100)\) \(H_{\varphi(7,0)[10]}(100)\)
icosastaculated-tethrahexon E100#^^(#^7)20 \(f_{\varphi(7,0)[20]}(100)\) \(H_{\varphi(7,0)[20]}(100)\)
triantastaculated-tethrahexon E100#^^(#^7)30 \(f_{\varphi(7,0)[30]}(100)\) \(H_{\varphi(7,0)[30]}(100)\)
sarantastaculated-tethrahexon E100#^^(#^7)40 \(f_{\varphi(7,0)[40]}(100)\) \(H_{\varphi(7,0)[40]}(100)\)
penintastaculated-tethrahexon E100#^^(#^7)50 \(f_{\varphi(7,0)[50]}(100)\) \(H_{\varphi(7,0)[50]}(100)\)
exintastaculated-tethrahexon E100#^^(#^7)60 \(f_{\varphi(7,0)[60]}(100)\) \(H_{\varphi(7,0)[60]}(100)\)
ebdomintastaculated-tethrahexon E100#^^(#^7)70 \(f_{\varphi(7,0)[70]}(100)\) \(H_{\varphi(7,0)[70]}(100)\)
ogdontastaculated-tethrahexon E100#^^(#^7)80 \(f_{\varphi(7,0)[80]}(100)\) \(H_{\varphi(7,0)[80]}(100)\)
enenintastaculated-tethrahexon E100#^^(#^7)90 \(f_{\varphi(7,0)[90]}(100)\) \(H_{\varphi(7,0)[90]}(100)\)

Etymology Edit

Parts of names Meaning
tethra ^^ (tetration)
du 2
tri 3
tetra 4
penta 5
hexa 6
hepta 7
ogda 8
enna 9
deka 10
icosa 20
trianta 30
saranta 40
peninta 50
exinta 60
ebdominta 70
ogdonta 80
eneninta 90

Some names of the numbers of this regiment are based on names of other Saibian's numbers, such as:

Sources Edit

  1. Sbiis Saibian, Extended Cascading-E Numbers Part II - Large Numbers
Saibian's regiments

Hyper-E regiments: Guppy regiment · Grangol regiment · Greagol regiment · Gigangol regiment · Gorgegol regiment · Gulgol regiment · Gaspgol regiment · Ginorgol regiment · Gargantuul regiment · Googondol regiment
Extended Hyper-E regiments: Gugold regiment · Graatagold regiment · Greegold regiment · Grinningold regiment · Golaagold regiment · Gruelohgold regiment · Gaspgold regiment · Ginorgold regiment · Gargantuuld regiment · Googondold regiment · Gugolthra regiment · Throogol regiment · Tetroogol regiment · Pentoogol regiment · Hexoogol regiment · Heptoogol regiment · Ogdoogol regiment · Entoogol regiment · Dektoogol regiment
Cascading-E regiments: Godgahlah regiment · Gridgahlah regiment · Kubikahlah regiment · Quarticahlah regiment · Quinticahlah regiment · Sexticahlah regiment · Septicahlah regiment · Octicahlah regiment · Nonicahlah regiment · Decicahlah regiment · Godgathor regiment · Gralgathor regiment · Thraelgathor regiment · Terinngathor regiment · Pentaelgathor regiment · Hexaelgathor regiment · Heptaelgathor regiment · Octaelgathor regiment · Ennaelgathor regiment · Dekaelgathor regiment · Godtothol regiment · Godtertol regiment · Godtopol regiment · Godhathor regiment · Godheptol regiment · Godoctol regiment · Godentol regiment · Goddekathol regiment
Extended Cascading-E regiments: Tethrathoth regiment · Monster-Giant regiment · Tethriterator regiment · Tethracross regiment · Tethracubor regiment · Tethrateron regiment · Tethrapeton regiment · Tethrahexon regiment · Tethrahepton regiment · Tethra-ogdon regiment · Tethraennon regiment · Tethradekon regiment · Tethratope regiment · Pentacthulhum regiment · Pentacthulcross regiment · Pentacthulcubor regiment · Pentacthulteron regiment · Pentacthulpeton regiment · Pentacthulhexon regiment · Pentacthulhepton regiment · Pentacthul-ogdon regiment · Pentacthulennon regiment · Pentacthuldekon regiment · Pentacthultope regiment · Hexacthulhum super regiment · Heptacthulhum super regiment · Ogdacthulhum super regiment · Ennacthulhum super regiment · Dekacthulhum super regiment

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.