FANDOM


The tethrahexon regiment is a series of numbers from E100#^^#^#6 to E100#^^(#^7)90 defined using Extended Cascading-E Notation (i.e. beginning from tethrahexon and up to enenintastaculated-tethrahexon).[1] The numbers were coined by Sbiis Saibian.

List of numbers of the regiment Edit

Name of number Extended Cascading-E Notation (exact equality) Fast-growing hierarchy (approximation) Hardy hierarchy (approximation) Slow-growing hierarchy (approximation) Bird's array notation (approximation)
tethrahexon, tethrahexeract E100#^^#^#6 \(f_{\varphi(6,0)}(100)\) \(H_{\varphi(6,0)}(100)\) \(g_{\vartheta(\varphi(6,\Omega+1))}(100)\) \(\{100,7 [1 [2 \neg 2] 2] 2\}\)
grand tethrahexon E100#^^#^(6)100#2 \(f_{\varphi(6,0)}^2(100)\) \(H_{\varphi(6,0)\times 2}(100)\)
grangol-carta-tethrahexon E100#^^#^(6)100#100 \(f_{\varphi(6,0)+1}(100)\) \(H_{\varphi(6,0)\times \omega}(100)\)
grand grangol-carta-tethrahexon E100#^^#^(6)100#100#2 \(f_{\varphi(6,0)+1}^2(100)\) \(H_{\varphi(6,0)\times \omega.2}(100)\)
godgahlah-carta-tethrahexon E100#^^#^(6)100#^#100 \(f_{\varphi(6,0)+\omega^\omega}(100)\) \(H_{\varphi(6,0)\times \omega^{\omega^\omega}}(100)\)
tethrathoth-carta-tethrahexon E100#^^#^(6)100#^^#100 \(f_{\varphi(6,0)+\varepsilon_0}(100)\) \(H_{\varphi(6,0)\times \varepsilon_0}(100)\)
tethracross-carta-tethrahexon E100#^^#^(6)100#^^##100 \(f_{\varphi(6,0)+\zeta_0}(100)\) \(H_{\varphi(6,0)\times \zeta_0}(100)\)
tethracubor-carta-tethrahexon E100#^^#^(6)100#^^###100 \(f_{\varphi(6,0)+\eta_0}(100)\) \(H_{\varphi(6,0)\times \eta_0}(100)\)
tethrateron-carta-tethrahexon E100#^^#^(6)100#^^####100 \(f_{\varphi(6,0)+\varphi(4,0)}(100)\) \(H_{\varphi(6,0)\times \varphi(4,0)}(100)\)
tethrapeton-carta-tethrahexon E100#^^#^(6)100#^^#^(5)100 \(f_{\varphi(6,0)+\varphi(5,0)}(100)\) \(H_{\varphi(6,0)\times \varphi(5,0)}(100)\)
tethrahexon-by-deuteron E100#^^#^(6)100#^^#^(6)100 \(f_{\varphi(6,0)+\varphi(6,0)}(100)\) \(H_{\varphi(6,0)\times \varphi(6,0)}(100)\)
tethrahexon-by-triton E100#^^#^(6)100#^^#^(6)100#^^#^(6)100

= E100(#^^#^6)*#3

\(f_{\varphi(6,0)\times 3}(100)\) \(H_{\varphi(6,0)^3}(100)\)
tethrahexon-by-teterton E100(#^^#^6)*#4 \(f_{\varphi(6,0)\times 4}(100)\) \(H_{\varphi(6,0)^4}(100)\)
tethrahexon-by-pepton E100(#^^#^6)*#5 \(f_{\varphi(6,0)\times 5}(100)\) \(H_{\varphi(6,0)^5}(100)\)
tethrahexon-by-exton E100(#^^#^6)*#6 \(f_{\varphi(6,0)\times 6}(100)\) \(H_{\varphi(6,0)^6}(100)\)
tethrahexon-by-epton E100(#^^#^6)*#7 \(f_{\varphi(6,0)\times 7}(100)\) \(H_{\varphi(6,0)^7}(100)\)
tethrahexon-by-ogdon E100(#^^#^6)*#8 \(f_{\varphi(6,0)\times 8}(100)\) \(H_{\varphi(6,0)^8}(100)\)
tethrahexon-by-enton E100(#^^#^6)*#9 \(f_{\varphi(6,0)\times 9}(100)\) \(H_{\varphi(6,0)^9}(100)\)
tethrahexon-by-dekaton E100(#^^#^6)*#10 \(f_{\varphi(6,0)\times 10}(100)\) \(H_{\varphi(6,0)^{10}}(100)\)
tethrahexon-by-hyperion E100(#^^#^6)*#100 \(f_{\varphi(6,0)\times\omega}(100)\) \(H_{\varphi(6,0)^\omega}(100)\)
tethrahexon-by-godgahlah E100(#^^#^6)*#^#100 \(f_{\varphi(6,0)\times\omega^\omega}(100)\) \(H_{\varphi(6,0)^{\omega^\omega}}(100)\)
tethrahexon-by-tethrathoth E100(#^^#^6)*#^^#100 \(f_{\varphi(6,0)\times\varepsilon_0}(100)\) \(H_{\varphi(6,0)^{\varepsilon_0}}(100)\)
tethrahexon-by-tethracross E100(#^^#^6)*#^^##100 \(f_{\varphi(6,0)\times\zeta_0}(100)\) \(H_{\varphi(6,0)^{\zeta_0}}(100)\)
tethrahexon-by-tethracubor E100(#^^#^6)*#^^###100 \(f_{\varphi(6,0)\times\eta_0}(100)\) \(H_{\varphi(6,0)^{\eta_0}}(100)\)
tethrahexon-by-tethrateron E100(#^^#^6)*#^^####100 \(f_{\varphi(6,0)\times\varphi(4,0)}(100)\) \(H_{\varphi(6,0)^{\varphi(4,0)}}(100)\)
tethrahexon-by-tethrapeton E100(#^^#^6)*(#^^#^5)100 \(f_{\varphi(6,0)\times\varphi(5,0)}(100)\) \(H_{\varphi(6,0)^{\varphi(5,0)}}(100)\)
deutero-tethrahexon E100#^^#^(6)*#^^#^(6)100 \(f_{\varphi(6,0)^2}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)}}(100)\)
trito-tethrahexon E100#^^#^(6)*#^^#^(6)*#^^#^(6)100

=E100(#^^#^6)^#3

\(f_{\varphi(6,0)^3}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^2}}(100)\)
teterto-tethrahexon E100(#^^#^6)^#4 \(f_{\varphi(6,0)^4}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^3}}(100)\)
pepto-tethrahexon E100(#^^#^6)^#5 \(f_{\varphi(6,0)^5}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^4}}(100)\)
exto-tethrahexon E100(#^^#^6)^#6 \(f_{\varphi(6,0)^6}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^5}}(100)\)
epto-tethrahexon E100(#^^#^6)^#7 \(f_{\varphi(6,0)^7}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^6}}(100)\)
ogdo-tethrahexon E100(#^^#^6)^#8 \(f_{\varphi(6,0)^8}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^7}}(100)\)
ento-tethrahexon E100(#^^#^6)^#9 \(f_{\varphi(6,0)^9}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^8}}(100)\)
dekato-tethrahexon E100(#^^#^6)^#10 \(f_{\varphi(6,0)^{10}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^9}}(100)\)
tethrahexonifact E100(#^^#^6)^#100 \(f_{\varphi(6,0)^\omega}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^\omega}}(100)\)
quadratatethrahexon E100(#^^#^6)^##100 \(f_{\varphi(6,0)^{\omega^2}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^2}}}(100)\)
kubikutethrahexon E100(#^^#^6)^###100 \(f_{\varphi(6,0)^{\omega^3}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^3}}}(100)\)
quarticutethrahexon E100(#^^#^6)^####100 \(f_{\varphi(6,0)^{\omega^4}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^4}}}(100)\)
quinticutethrahexon E100(#^^#^6)^#^#5 \(f_{\varphi(6,0)^{\omega^5}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^5}}}(100)\)
sexticutethrahexon E100(#^^#^6)^#^#6 \(f_{\varphi(6,0)^{\omega^6}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^6}}}(100)\)
septicutethrahexon E100(#^^#^6)^#^#7 \(f_{\varphi(6,0)^{\omega^7}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^7}}}(100)\)
octicutethrahexon E100(#^^#^6)^#^#8 \(f_{\varphi(6,0)^{\omega^8}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^8}}}(100)\)
nonicutethrahexon E100(#^^#^6)^#^#9 \(f_{\varphi(6,0)^{\omega^9}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^9}}}(100)\)
decicutethrahexon E100(#^^#^6)^#^#10 \(f_{\varphi(6,0)^{\omega^{10}}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^{10}}}}(100)\)
tethrahexon-ipso-godgahlah E100(#^^#^6)^#^#100 \(f_{\varphi(6,0)^{\omega^\omega}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^\omega}}}(100)\)
tethrahexon-ipso-godgathor E100(#^^#^6)^#^#^#100 \(f_{\varphi(6,0)^{\omega^{\omega^\omega}}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^{\omega^\omega}}}}(100)\)
tethrahexon-ipso-godtothol E100(#^^#^6)^#^#^#^#100 \(f_{\varphi(6,0)^{\omega^{\omega^{\omega^\omega}}}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\omega^{\omega^{\omega^\omega}}}}}(100)\)
tethrahexon-ipso-tethrathoth E100(#^^#^6)^#^^#100 \(f_{\varphi(6,0)^{\varepsilon_0}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varepsilon_0}}}(100)\)
tethrahexon-ipso-tethracross E100(#^^#^6)^#^^##100 \(f_{\varphi(6,0)^{\zeta_0}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\zeta_0}}}(100)\)
tethrahexon-ipso-tethracubor E100(#^^#^6)^#^^###100 \(f_{\varphi(6,0)^{\eta_0}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\eta_0}}}(100)\)
tethrahexon-ipso-tethrateron E100(#^^#^6)^#^^####100 \(f_{\varphi(6,0)^{\varphi(4,0)}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varphi(4,0)}}}(100)\)
tethrahexon-ipso-tethrapeton E100(#^^#^6)^#^^#^(5)100 \(f_{\varphi(6,0)^{\varphi(5,0)}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varphi(5,0)}}}(100)\)
dutetrated-tethrahexon E100(#^^#^6)^(#^^#^6)100 \(f_{\varphi(6,0)^{\varphi(6,0)}}(100)\) \(H_{\varphi(6,0)^{\varphi(6,0)^{\varphi(6,0)}}}(100)\)
tritetrated-tethrahexon E100(#^^#^6)^(#^^#^6)^(#^^#^6)100

= E100(#^^#^6)^^#3

\(f_{\varphi(6,0)\uparrow\uparrow 3}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 4}(100)\)
quadratetrated-tethrahexon E100(#^^#^6)^^#4 \(f_{\varphi(6,0)\uparrow\uparrow 4}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 5}(100)\)
quinquatetrated-tethrahexon E100(#^^#^6)^^#5 \(f_{\varphi(6,0)\uparrow\uparrow 5}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 6}(100)\)
sexatetrated-tethrahexon E100(#^^#^6)^^#6 \(f_{\varphi(6,0)\uparrow\uparrow 6}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 7}(100)\)
septatetrated-tethrahexon E100(#^^#^6)^^#7 \(f_{\varphi(6,0)\uparrow\uparrow 7}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 8}(100)\)
octatetrated-tethrahexon E100(#^^#^6)^^#8 \(f_{\varphi(6,0)\uparrow\uparrow 8}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 9}(100)\)
nonatetrated-tethrahexon E100(#^^#^6)^^#9 \(f_{\varphi(6,0)\uparrow\uparrow 9}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 10}(100)\)
decatetrated-tethrahexon E100(#^^#^6)^^#10 \(f_{\varphi(6,0)\uparrow\uparrow 10}(100)\) \(H_{\varphi(6,0)\uparrow\uparrow 11}(100)\)
terrible tethrahexon E100(#^^#^6)^^#100 \(f_{\varepsilon_{\varphi(6,0)+1}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+1}}(100)\)
terrible terrible tethrahexon E100((#^^#^6)^^#)^^#100 \(f_{\varepsilon_{\varphi(6,0)+2}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+2}}(100)\)
three-ex-terrible tethrahexon E100(#^^#^6)^^#>(3)100 \(f_{\varepsilon_{\varphi(6,0)+3}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+3}}(100)\)
four-ex-terrible tethrahexon E100(#^^#^6)^^#>(4)100 \(f_{\varepsilon_{\varphi(6,0)+4}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+4}}(100)\)
five-ex-terrible tethrahexon E100(#^^#^6)^^#>(5)100 \(f_{\varepsilon_{\varphi(6,0)+5}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+4}}(100)\)
six-ex-terrible tethrahexon E100(#^^#^6)^^#>(6)100 \(f_{\varepsilon_{\varphi(6,0)+6}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+6}}(100)\)
seven-ex-terrible tethrahexon E100(#^^#^6)^^#>(7)100 \(f_{\varepsilon_{\varphi(6,0)+7}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+7}}(100)\)
eight-ex-terrible tethrahexon E100(#^^#^6)^^#>(8)100 \(f_{\varepsilon_{\varphi(6,0)+8}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+8}}(100)\)
nine-ex-terrible tethrahexon E100(#^^#^6)^^#>(9)100 \(f_{\varepsilon_{\varphi(6,0)+9}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+9}}(100)\)
ten-ex-terrible tethrahexon E100(#^^#^6)^^#>(10)100 \(f_{\varepsilon_{\varphi(6,0)+10}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+10}}(100)\)
territerated tethrahexon E100(#^^#^6)^^#>#100 \(f_{\varepsilon_{\varphi(6,0)+\omega}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\omega}}(100)\)
godgahlah-turreted-territethrahexon E100(#^^#^6)^^#>#^#100 \(f_{\varepsilon_{\varphi(6,0)+\omega^\omega}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-territethrahexon E100(#^^#^6)^^#>#^^#100 \(f_{\varepsilon_{\varphi(6,0)+\varepsilon_0}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varepsilon_0}}(100)\)
tethracross-turreted-territethrahexon E100(#^^#^6)^^#>#^^##100 \(f_{\varepsilon_{\varphi(6,0)+\zeta_0}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\zeta_0}}(100)\)
tethracubor-turreted-territethrahexon E100(#^^#^6)^^#>#^^###100 \(f_{\varepsilon_{\varphi(6,0)+\eta_0}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\eta_0}}(100)\)
tethrateron-turreted-territethrahexon E100(#^^#^6)^^#>#^^####100 \(f_{\varepsilon_{\varphi(6,0)+\varphi(4,0)}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-territethrahexon E100(#^^#^6)^^#>(#^^#^5)100 \(f_{\varepsilon_{\varphi(6,0)+\varphi(5,0)}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-territethrahexon E100(#^^#^6)^^#>(#^^#^6)100 \(f_{\varepsilon_{\varphi(6,0)+\varphi(6,0)}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varphi(6,0)}}(100)\)
dustaculated-territethrahexon E100(#^^#^6)^^#>(#^^#^6)^^#100 \(f_{\varepsilon_{\varphi(6,0)+\varepsilon_{\varphi(6,0)+1}}}(100)\) \(H_{\varepsilon_{\varphi(6,0)+\varepsilon_{\varphi(6,0)+1}}}(100)\)
tristaculated-territethrahexon E100(#^^#^6)^^#>(#^^#^6)^^#>(#^^#^6)^^#100

= E100(#^^#^6)^^##3

\(f_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(6,0)+1}}}}(100)\) \(H_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(6,0)+1}}}}(100)\)
tetrastaculated-territethrahexon E100(#^^#^6)^^##4 \(f_{\zeta_{\varphi(6,0)+1}[4]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[4]}(100)\)
pentastaculated-territethrahexon E100(#^^#^6)^^##5 \(f_{\zeta_{\varphi(6,0)+1}[5]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[5]}(100)\)
hexastaculated-territethrahexon E100(#^^#^6)^^##6 \(f_{\zeta_{\varphi(6,0)+1}[6]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[6]}(100)\)
heptastaculated-territethrahexon E100(#^^#^6)^^##7 \(f_{\zeta_{\varphi(6,0)+1}[7]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[7]}(100)\)
ogdastaculated-territethrahexon E100(#^^#^6)^^##8 \(f_{\zeta_{\varphi(6,0)+1}[8]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[8]}(100)\)
ennastaculated-territethrahexon E100(#^^#^6)^^##9 \(f_{\zeta_{\varphi(6,0)+1}[9]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[9]}(100)\)
dekastaculated-territethrahexon E100(#^^#^6)^^##10 \(f_{\zeta_{\varphi(6,0)+1}[10]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[10]}(100)\)
terrisquared-tethrahexon E100(#^^#^6)^^##100 \(f_{\zeta_{\varphi(6,0)+1}}(100)\) \(H_{\zeta_{\varphi(6,0)+1}}(100)\)
two-ex-terrisquared-tethrahexon E100((#^^#^6)^^##)^^##100 \(f_{\zeta_{\varphi(6,0)+2}}(100)\) \(H_{\zeta_{\varphi(6,0)+2}}(100)\)
three-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(3)100 \(f_{\zeta_{\varphi(6,0)+3}}(100)\) \(H_{\zeta_{\varphi(6,0)+3}}(100)\)
four-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(4)100 \(f_{\zeta_{\varphi(6,0)+4}}(100)\) \(H_{\zeta_{\varphi(6,0)+4}}(100)\)
five-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(5)100 \(f_{\zeta_{\varphi(6,0)+5}}(100)\) \(H_{\zeta_{\varphi(6,0)+5}}(100)\)
six-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(6)100 \(f_{\zeta_{\varphi(6,0)+6}}(100)\) \(H_{\zeta_{\varphi(6,0)+6}}(100)\)
seven-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(7)100 \(f_{\zeta_{\varphi(6,0)+7}}(100)\) \(H_{\zeta_{\varphi(6,0)+7}}(100)\)
eight-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(8)100 \(f_{\zeta_{\varphi(6,0)+8}}(100)\) \(H_{\zeta_{\varphi(6,0)+8}}(100)\)
nine-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(9)100 \(f_{\zeta_{\varphi(6,0)+9}}(100)\) \(H_{\zeta_{\varphi(6,0)+9}}(100)\)
ten-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>(10)100 \(f_{\zeta_{\varphi(6,0)+10}}(100)\) \(H_{\zeta_{\varphi(6,0)+10}}(100)\)
hundred-ex-terrisquared-tethrahexon E100(#^^#^6)^^##>#100 \(f_{\zeta_{\varphi(6,0)+\omega}}(100)\) \(H_{\zeta_{\varphi(6,0)+\omega}}(100)\)
godgahlah-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^#100 \(f_{\zeta_{\varphi(6,0)+\omega^\omega}}(100)\) \(H_{\zeta_{\varphi(6,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^#100 \(f_{\zeta_{\varphi(6,0)+\varepsilon_0}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varepsilon_0}}(100)\)
tethracross-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^##100 \(f_{\zeta_{\varphi(6,0)+\zeta_0}}(100)\) \(H_{\zeta_{\varphi(6,0)+\zeta_0}}(100)\)
tethracubor-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^###100 \(f_{\zeta_{\varphi(6,0)+\eta_0}}(100)\) \(H_{\zeta_{\varphi(6,0)+\eta_0}}(100)\)
tethrateron-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>#^^####100 \(f_{\zeta_{\varphi(6,0)+\varphi(4,0)}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^5)100 \(f_{\zeta_{\varphi(6,0)+\varphi(5,0)}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)100 \(f_{\zeta_{\varphi(6,0)+\varphi(6,0)}}(100)\) \(H_{\zeta_{\varphi(6,0)+\varphi(6,0)}}(100)\)
dustaculated-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)^^##100 \(f_{\zeta_{\varphi(6,0)+\zeta_{\varphi(6,0)+1}}}(100)\) \(H_{\zeta_{\varphi(6,0)+\zeta_{\varphi(6,0)+1}}}(100)\)
tristaculated-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)^^##>(#^^#^6)^^##100 \(f_{\zeta_{\zeta_{\zeta_{\varphi(6,0)+1}}}}(100)\) \(H_{\zeta_{\zeta_{\zeta_{\varphi(6,0)+1}}}}(100)\)
tetrastaculated-terrisquared-tethrahexon E100(#^^#^6)^^##>(#^^#^6)^^##>(#^^#^6)^^##>(#^^#^6)^^##100

= E100(#^^#^6)^^###4

\(f_{\eta_{\varphi(6,0)+1}[4]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[4]}(100)\)
pentastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###5 \(f_{\eta_{\varphi(6,0)+1}[5]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[5]}(100)\)
hexastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###6 \(f_{\eta_{\varphi(6,0)+1}[6]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[6]}(100)\)
heptastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###7 \(f_{\eta_{\varphi(6,0)+1}[7]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[7]}(100)\)
ogdastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###8 \(f_{\eta_{\varphi(6,0)+1}[8]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[8]}(100)\)
ennastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###9 \(f_{\eta_{\varphi(6,0)+1}[9]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[9]}(100)\)
dekastaculated-terrisquared-tethrahexon E100(#^^#^6)^^###10 \(f_{\eta_{\varphi(6,0)+1}[10]}(100)\) \(H_{\eta_{\varphi(6,0)+1}[10]}(100)\)
terricubed-tethrahexon E100(#^^#^6)^^###100 \(f_{\eta_{\varphi(6,0)+1}}(100)\) \(H_{\eta_{\varphi(6,0)+1}}(100)\)
two-ex-terricubed-tethrahexon E100((#^^#^6)^^###)^^###100 \(f_{\eta_{\varphi(6,0)+2}}(100)\) \(H_{\eta_{\varphi(6,0)+2}}(100)\)
three-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(3)100 \(f_{\eta_{\varphi(6,0)+3}}(100)\) \(H_{\eta_{\varphi(6,0)+3}}(100)\)
four-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(4)100 \(f_{\eta_{\varphi(6,0)+4}}(100)\) \(H_{\eta_{\varphi(6,0)+4}}(100)\)
five-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(5)100 \(f_{\eta_{\varphi(6,0)+5}}(100)\) \(H_{\eta_{\varphi(6,0)+5}}(100)\)
six-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(6)100 \(f_{\eta_{\varphi(6,0)+6}}(100)\) \(H_{\eta_{\varphi(6,0)+6}}(100)\)
seven-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(7)100 \(f_{\eta_{\varphi(6,0)+7}}(100)\) \(H_{\eta_{\varphi(6,0)+7}}(100)\)
eight-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(8)100 \(f_{\eta_{\varphi(6,0)+8}}(100)\) \(H_{\eta_{\varphi(6,0)+8}}(100)\)
nine-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(9)100 \(f_{\eta_{\varphi(6,0)+9}}(100)\) \(H_{\eta_{\varphi(6,0)+9}}(100)\)
ten-ex-terricubed-tethrahexon E100(#^^#^6)^^###>(10)100 \(f_{\eta_{\varphi(6,0)+10}}(100)\) \(H_{\eta_{\varphi(6,0)+10}}(100)\)
hundred-ex-terricubed-tethrahexon E100(#^^#^6)^^###>#100 \(f_{\eta_{\varphi(6,0)+\omega}}(100)\) \(H_{\eta_{\varphi(6,0)+\omega}}(100)\)
godgahlah-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^#100 \(f_{\eta_{\varphi(6,0)+\omega^\omega}}(100)\) \(H_{\eta_{\varphi(6,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^#100 \(f_{\eta_{\varphi(6,0)+\varepsilon_0}}(100)\) \(H_{\eta_{\varphi(6,0)+\varepsilon_0}}(100)\)
tethracross-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^##100 \(f_{\eta_{\varphi(6,0)+\zeta_0}}(100)\) \(H_{\eta_{\varphi(6,0)+\zeta_0}}(100)\)
tethracubor-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^###100 \(f_{\eta_{\varphi(6,0)+\eta_0}}(100)\) \(H_{\eta_{\varphi(6,0)+\eta_0}}(100)\)
tethrateron-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>#^^####100 \(f_{\eta_{\varphi(6,0)+\varphi(4,0)}}(100)\) \(H_{\eta_{\varphi(6,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^5)100 \(f_{\eta_{\varphi(6,0)+\varphi(5,0)}}(100)\) \(H_{\eta_{\varphi(6,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)100 \(f_{\eta_{\varphi(6,0)+\varphi(6,0)}}(100)\) \(H_{\eta_{\varphi(6,0)+\varphi(6,0)}}(100)\)
dustaculated-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)^^###100 \(f_{\eta_{\eta_{\varphi(6,0)+1}}}(100)\) \(H_{\eta_{\eta_{\varphi(6,0)+1}}}(100)\)
tristaculated-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)^^###>(#^^#^6)^^###100 \(f_{\eta_{\eta_{\eta_{\varphi(6,0)+1}}}}(100)\) \(H_{\eta_{\eta_{\eta_{\varphi(6,0)+1}}}}(100)\)
tetrastaculated-terricubed-tethrahexon E100(#^^#^6)^^###>(#^^#^6)^^###>(#^^#^6)^^###>(#^^#^6)^^###100

= E100(#^^#^6)^^####4

\(f_{\varphi(4,\varphi(6,0)+1)[4]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[4]}(100)\)
pentastaculated-terricubed-tethrahexon E100(#^^#^6)^^####5 \(f_{\varphi(4,\varphi(6,0)+1)[5]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[5]}(100)\)
hexastaculated-terricubed-tethrahexon E100(#^^#^6)^^####6 \(f_{\varphi(4,\varphi(6,0)+1)[6]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[6]}(100)\)
heptastaculated-terricubed-tethrahexon E100(#^^#^6)^^####7 \(f_{\varphi(4,\varphi(6,0)+1)[7]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[7]}(100)\)
ogdastaculated-terricubed-tethrahexon E100(#^^#^6)^^####8 \(f_{\varphi(4,\varphi(6,0)+1)[8]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[8]}(100)\)
ennastaculated-terricubed-tethrahexon E100(#^^#^6)^^####9 \(f_{\varphi(4,\varphi(6,0)+1)[9]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[9]}(100)\)
dekastaculated-terricubed-tethrahexon E100(#^^#^6)^^####10 \(f_{\varphi(4,\varphi(6,0)+1)[10]}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)[10]}(100)\)
territesserated-tethrahexon E100(#^^#^6)^^####100 \(f_{\varphi(4,\varphi(6,0)+1)}(100)\) \(H_{\varphi(4,\varphi(6,0)+1)}(100)\)
two-ex-territesserated-tethrahexon E100((#^^#^6)^^####)^^####100 \(f_{\varphi(4,\varphi(6,0)+2)}(100)\) \(H_{\varphi(4,\varphi(6,0)+2)}(100)\)
three-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(3)100 \(f_{\varphi(4,\varphi(6,0)+3)}(100)\) \(H_{\varphi(4,\varphi(6,0)+3)}(100)\)
four-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(4)100 \(f_{\varphi(4,\varphi(6,0)+4)}(100)\) \(H_{\varphi(4,\varphi(6,0)+4)}(100)\)
five-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(5)100 \(f_{\varphi(4,\varphi(6,0)+5)}(100)\) \(H_{\varphi(4,\varphi(6,0)+5)}(100)\)
six-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(6)100 \(f_{\varphi(4,\varphi(6,0)+6)}(100)\) \(H_{\varphi(4,\varphi(6,0)+6)}(100)\)
seven-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(7)100 \(f_{\varphi(4,\varphi(6,0)+7)}(100)\) \(H_{\varphi(4,\varphi(6,0)+7)}(100)\)
eight-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(8)100 \(f_{\varphi(4,\varphi(6,0)+8)}(100)\) \(H_{\varphi(4,\varphi(6,0)+8)}(100)\)
nine-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(9)100 \(f_{\varphi(4,\varphi(6,0)+9)}(100)\) \(H_{\varphi(4,\varphi(6,0)+9)}(100)\)
ten-ex-territesserated-tethrahexon E100(#^^#^6)^^####>(10)100 \(f_{\varphi(4,\varphi(6,0)+10)}(100)\) \(H_{\varphi(4,\varphi(6,0)+10)}(100)\)
hundred-ex-territesserated-tethrahexon E100(#^^#^6)^^####>#100 \(f_{\varphi(4,\varphi(6,0)+\omega)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\omega)}(100)\)
godgahlah-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^#100 \(f_{\varphi(4,\varphi(6,0)+\omega^\omega)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^#100 \(f_{\varphi(4,\varphi(6,0)+\varepsilon_0)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varepsilon_0)}(100)\)
tethracross-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^##100 \(f_{\varphi(4,\varphi(6,0)+\zeta_0)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\zeta_0)}(100)\)
tethracubor-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^###100 \(f_{\varphi(4,\varphi(6,0)+\eta_0)}(100)\) \(H_{\varphi(4,\varphi(6,0)+\eta_0)}(100)\)
tethrateron-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>#^^####100 \(f_{\varphi(4,\varphi(6,0)+\varphi(4,0))}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^5)100 \(f_{\varphi(4,\varphi(6,0)+\varphi(5,0))}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^6)100 \(f_{\varphi(4,\varphi(6,0)+\varphi(6,0))}(100)\) \(H_{\varphi(4,\varphi(6,0)+\varphi(6,0))}(100)\)
dustaculated-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^6)^^####100 \(f_{\varphi(4,\varphi(4,\varphi(6,0)+1))}(100)\) \(H_{\varphi(4,\varphi(4,\varphi(6,0)+1))}(100)\)
tristaculated-territesserated-tethrahexon E100(#^^#^6)^^####>(#^^#^6)^^####>(#^^#^6)^^####100

= E100((#^^#^6)^^#^5)3

\(f_{\varphi(5,\varphi(6,0)+1)[3]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[3]}(100)\)
tetrastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)4 \(f_{\varphi(5,\varphi(6,0)+1)[4]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[4]}(100)\)
pentastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)5 \(f_{\varphi(5,\varphi(6,0)+1)[5]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[5]}(100)\)
hexastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)6 \(f_{\varphi(5,\varphi(6,0)+1)[6]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[6]}(100)\)
heptastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)7 \(f_{\varphi(5,\varphi(6,0)+1)[7]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[7]}(100)\)
ogdastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)8 \(f_{\varphi(5,\varphi(6,0)+1)[8]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[8]}(100)\)
ennastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)9 \(f_{\varphi(5,\varphi(6,0)+1)[9]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[9]}(100)\)
dekastaculated-territesserated-tethrahexon E100((#^^#^6)^^#^5)10 \(f_{\varphi(5,\varphi(6,0)+1)[10]}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)[10]}(100)\)
terripenterated-tethrahexon E100((#^^#^6)^^#^5)100 \(f_{\varphi(5,\varphi(6,0)+1)}(100)\) \(H_{\varphi(5,\varphi(6,0)+1)}(100)\)
two-ex-terripenterated-tethrahexon E100(((#^^#^6)^^#^5)^^#^5)100 \(f_{\varphi(5,\varphi(6,0)+2)}(100)\) \(H_{\varphi(5,\varphi(6,0)+2)}(100)\)
three-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(3)100 \(f_{\varphi(5,\varphi(6,0)+3)}(100)\) \(H_{\varphi(5,\varphi(6,0)+3)}(100)\)
four-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(4)100 \(f_{\varphi(5,\varphi(6,0)+4)}(100)\) \(H_{\varphi(5,\varphi(6,0)+4)}(100)\)
five-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(5)100 \(f_{\varphi(5,\varphi(6,0)+5)}(100)\) \(H_{\varphi(5,\varphi(6,0)+5)}(100)\)
six-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(6)100 \(f_{\varphi(5,\varphi(6,0)+6)}(100)\) \(H_{\varphi(5,\varphi(6,0)+6)}(100)\)
seven-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(7)100 \(f_{\varphi(5,\varphi(6,0)+7)}(100)\) \(H_{\varphi(5,\varphi(6,0)+7)}(100)\)
eight-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(8)100 \(f_{\varphi(5,\varphi(6,0)+8)}(100)\) \(H_{\varphi(5,\varphi(6,0)+8)}(100)\)
nine-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(9)100 \(f_{\varphi(5,\varphi(6,0)+9)}(100)\) \(H_{\varphi(5,\varphi(6,0)+9)}(100)\)
ten-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(10)100 \(f_{\varphi(5,\varphi(6,0)+10)}(100)\) \(H_{\varphi(5,\varphi(6,0)+10)}(100)\)
hundred-ex-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#100 \(f_{\varphi(5,\varphi(6,0)+\omega)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\omega)}(100)\)
godgahlah-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^#100 \(f_{\varphi(5,\varphi(6,0)+\omega^\omega)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^#100 \(f_{\varphi(5,\varphi(6,0)+\varepsilon_0)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varepsilon_0)}(100)\)
tethracross-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^##100 \(f_{\varphi(5,\varphi(6,0)+\zeta_0)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\zeta_0)}(100)\)
tethracubor-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^###100 \(f_{\varphi(5,\varphi(6,0)+\eta_0)}(100)\) \(H_{\varphi(5,\varphi(6,0)+\eta_0)}(100)\)
tethrateron-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>#^^####100 \(f_{\varphi(5,\varphi(6,0)+\varphi(4,0))}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^5)100 \(f_{\varphi(5,\varphi(6,0)+\varphi(5,0))}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)100 \(f_{\varphi(5,\varphi(6,0)+\varphi(6,0))}(100)\) \(H_{\varphi(5,\varphi(6,0)+\varphi(6,0))}(100)\)
territethrahexon-turreted-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)^^#100 \(f_{\varphi(5,\varepsilon_{\varphi(6,0)+1})}(100)\) \(H_{\varphi(5,\varepsilon_{\varphi(6,0)+1})}(100)\)
dustaculated-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)^^(#^5)100 \(f_{\varphi(6,1)[2]}(100)\) \(H_{\varphi(6,1)[2]}(100)\)
tristaculated-terripenterated-tethrahexon E100(#^^#^6)^^(#^5)>(#^^#^6)^^(#^5)>(#^^#^6)^^(#^5)100

= E100((#^^#^6)^^#^6)3

\(f_{\varphi(6,1)[3]}(100)\) \(H_{\varphi(6,1)[3]}(100)\)
tetrastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)4 \(f_{\varphi(6,1)[4]}(100)\) \(H_{\varphi(6,1)[4]}(100)\)
pentastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)5 \(f_{\varphi(6,1)[5]}(100)\) \(H_{\varphi(6,1)[5]}(100)\)
hexastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)6 \(f_{\varphi(6,1)[6]}(100)\) \(H_{\varphi(6,1)[6]}(100)\)
heptastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)7 \(f_{\varphi(6,1)[7]}(100)\) \(H_{\varphi(6,1)[7]}(100)\)
ogdastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)8 \(f_{\varphi(6,1)[8]}(100)\) \(H_{\varphi(6,1)[8]}(100)\)
ennastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)9 \(f_{\varphi(6,1)[9]}(100)\) \(H_{\varphi(6,1)[9]}(100)\)
dekastaculated-terripenterated-tethrahexon E100((#^^#^6)^^#^6)10 \(f_{\varphi(6,1)[10]}(100)\) \(H_{\varphi(6,1)[10]}(100)\)
tethraduhexon E100((#^^#^6)^^#^6)100 \(f_{\varphi(6,1)}(100)\) \(H_{\varphi(6,1)}(100)\)
tethratrihexon E100(((#^^#^6)^^#^6)^^#^6)100 \(f_{\varphi(6,2)}(100)\) \(H_{\varphi(6,2)}(100)\)
tethratetrahexon E100((((#^^#^6)^^#^6)^^#^6)^^#^6)100 \(f_{\varphi(6,3)}(100)\) \(H_{\varphi(6,3)}(100)\)
tethrapentahexon E100#^^(#^6)>#5 \(f_{\varphi(6,4)}(100)\) \(H_{\varphi(6,4)}(100)\)
tethrahexahexon E100#^^(#^6)>#6 \(f_{\varphi(6,5)}(100)\) \(H_{\varphi(6,5)}(100)\)
tethraheptahexon E100#^^(#^6)>#7 \(f_{\varphi(6,6)}(100)\) \(H_{\varphi(6,6)}(100)\)
tethra-octahexon E100#^^(#^6)>#8 \(f_{\varphi(6,7)}(100)\) \(H_{\varphi(6,7)}(100)\)
tethra-ennahexon E100#^^(#^6)>#9 \(f_{\varphi(6,8)}(100)\) \(H_{\varphi(6,8)}(100)\)
tethradekahexon E100#^^(#^6)>#10 \(f_{\varphi(6,9)}(100)\) \(H_{\varphi(6,9)}(100)\)
tethra-endekahexon E100#^^(#^6)>#11 \(f_{\varphi(6,10)}(100)\) \(H_{\varphi(6,10)}(100)\)
tethradodekahexon E100#^^(#^6)>#12 \(f_{\varphi(6,11)}(100)\) \(H_{\varphi(6,11)}(100)\)
tethra-icosahexon E100#^^(#^6)>#20 \(f_{\varphi(6,19)}(100)\) \(H_{\varphi(6,19)}(100)\)
tethriterhexon E100#^^(#^6)>#100 \(f_{\varphi(6,\omega)}(100)\) \(H_{\varphi(6,\omega)}(100)\)
godgahlah-turreted-tethrahexon E100#^^(#^6)>#^#100 \(f_{\varphi(6,\omega^\omega)}(100)\) \(H_{\varphi(6,\omega^\omega)}(100)\)
tethrathoth-turreted-tethrahexon E100#^^(#^6)>#^^#100 \(f_{\varphi(6,\varepsilon_0)}(100)\) \(H_{\varphi(6,\varepsilon_0)}(100)\)
tethracross-turreted-tethrahexon E100#^^(#^6)>#^^##100 \(f_{\varphi(6,\zeta_0)}(100)\) \(H_{\varphi(6,\zeta_0)}(100)\)
tethracubor-turreted-tethrahexon E100#^^(#^6)>#^^###100 \(f_{\varphi(6,\eta_0)}(100)\) \(H_{\varphi(6,\eta_0)}(100)\)
tethrateron-turreted-tethrahexon E100#^^(#^6)>#^^####100 \(f_{\varphi(6,\varphi(4,0))}(100)\) \(H_{\varphi(6,\varphi(4,0))}(100)\)
tethrapeton-turreted-tethrahexon E100#^^(#^6)>#^^(#^5)100 \(f_{\varphi(6,\varphi(5,0))}(100)\) \(H_{\varphi(6,\varphi(5,0))}(100)\)
tethrahexon-turreted-tethrahexon, dustaculated-tethrahexon E100#^^(#^6)>#^^(#^6)100 \(f_{\varphi(6,\varphi(6,0))}(100)\) \(H_{\varphi(6,\varphi(6,0))}(100)\)
tristaculated-tethrahexon E100#^^(#^6)>#^^(#^6)>#^^(#^6)100 \(f_{\varphi(6,\varphi(6,\varphi(6,0)))}(100)\) \(H_{\varphi(6,\varphi(6,\varphi(6,0)))}(100)\)
tetrastaculated-tethrahexon E100#^^(#^6)>#^^(#^6)>#^^(#^6)>#^^(#^6)100

= E100#^^(#^7)4

\(f_{\varphi(7,0)[4]}(100)\) \(H_{\varphi(7,0)[4]}(100)\)
pentastaculated-tethrahexon E100#^^(#^7)5 \(f_{\varphi(7,0)[5]}(100)\) \(H_{\varphi(7,0)[5]}(100)\)
hexastaculated-tethrahexon E100#^^(#^7)6 \(f_{\varphi(7,0)[6]}(100)\) \(H_{\varphi(7,0)[6]}(100)\)
heptastaculated-tethrahexon E100#^^(#^7)7 \(f_{\varphi(7,0)[7]}(100)\) \(H_{\varphi(7,0)[7]}(100)\)
ogdastaculated-tethrahexon E100#^^(#^7)8 \(f_{\varphi(7,0)[8]}(100)\) \(H_{\varphi(7,0)[8]}(100)\)
ennastaculated-tethrahexon E100#^^(#^7)9 \(f_{\varphi(7,0)[9]}(100)\) \(H_{\varphi(7,0)[9]}(100)\)
dekastaculated-tethrahexon E100#^^(#^7)10 \(f_{\varphi(7,0)[10]}(100)\) \(H_{\varphi(7,0)[10]}(100)\)
icosastaculated-tethrahexon E100#^^(#^7)20 \(f_{\varphi(7,0)[20]}(100)\) \(H_{\varphi(7,0)[20]}(100)\)
triantastaculated-tethrahexon E100#^^(#^7)30 \(f_{\varphi(7,0)[30]}(100)\) \(H_{\varphi(7,0)[30]}(100)\)
sarantastaculated-tethrahexon E100#^^(#^7)40 \(f_{\varphi(7,0)[40]}(100)\) \(H_{\varphi(7,0)[40]}(100)\)
penintastaculated-tethrahexon E100#^^(#^7)50 \(f_{\varphi(7,0)[50]}(100)\) \(H_{\varphi(7,0)[50]}(100)\)
exintastaculated-tethrahexon E100#^^(#^7)60 \(f_{\varphi(7,0)[60]}(100)\) \(H_{\varphi(7,0)[60]}(100)\)
ebdomintastaculated-tethrahexon E100#^^(#^7)70 \(f_{\varphi(7,0)[70]}(100)\) \(H_{\varphi(7,0)[70]}(100)\)
ogdontastaculated-tethrahexon E100#^^(#^7)80 \(f_{\varphi(7,0)[80]}(100)\) \(H_{\varphi(7,0)[80]}(100)\)
enenintastaculated-tethrahexon E100#^^(#^7)90 \(f_{\varphi(7,0)[90]}(100)\) \(H_{\varphi(7,0)[90]}(100)\)

Etymology Edit

Parts of names Meaning
tethra ^^ (tetration)
du 2
tri 3
tetra 4
penta 5
hexa 6
hepta 7
ogda 8
enna 9
deka 10
icosa 20
trianta 30
saranta 40
peninta 50
exinta 60
ebdominta 70
ogdonta 80
eneninta 90

Some names of the numbers of this regiment are based on names of other Saibian's numbers, such as:

Sources Edit

  1. Sbiis Saibian, Extended Cascading-E Numbers Part II - Large Numbers

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.