## FANDOM

10,383 Pages

For Tiaokhiao's trecillion, see duodecillion.

The trecillion is equal to $$10^{3\left(10^{39}\right)+3}$$, or $$10^{3\text{ duodecillion }3}$$.[1] The term was coined by Jonathan Bowers.

### Etymology

The name of this number is based on the suffix "-illion" and the prefix "treco-".

### Approximations in other notations

Notation Lower bound Upper bound
Arrow notation $$1000\uparrow(1+10\uparrow39)$$
Down-arrow notation $$1000\downarrow\downarrow14$$ $$402\downarrow\downarrow16$$
Steinhaus-Moser Notation 26[3][3] 27[3][3]
Copy notation 2[2[40]] 3[3[40]]
H* function H(H(12))
Taro's multivariable Ackermann function A(3,A(3,129)) A(3,A(3,130))
Pound-Star Notation #*((1))*(5,1,4)*6 #*((1))*(2,4,0,3)*4
BEAF {1000,1+{10,39}}
Hyper-E notation E(3+3E39)
Bashicu matrix system (0)(1)[129] (0)(1)[130]
Hyperfactorial array notation (33!)! (34!)!
Fast-growing hierarchy $$f_2(f_2(125))$$ $$f_2(f_2(126))$$
Hardy hierarchy $$H_{\omega^22}(125)$$ $$H_{\omega^22}(126)$$
Slow-growing hierarchy $$g_{\omega^{\omega^{\omega3+9}3+3}}(10)$$

### Sources

1. Illion Numbers by Jonathan Bowers