## FANDOM

10,405 Pages

This page is about Bowers's definition. For the alternative definition, see novemvigintillion.

The triacontillion is equal to $$10^{3\left(10^{90}\right)+3}$$ or $$10^{3\text{ novemvigintillion }3}$$.[1] The term was coined by Jonathan Bowers.

## Etymology

The name of this number is based on the suffix "-illion" and the prefix "triaconta-" (from Greek 30).

## Approximations in other notations

Notation Lower bound Upper bound
Arrow notation $$1000\uparrow(1+10\uparrow90)$$
Down-arrow notation $$1000\downarrow\downarrow31$$ $$112\downarrow\downarrow45$$
Steinhaus-Moser Notation 51[3][3] 52[3][3]
Copy notation 2[2[91]] 3[3[91]]
H* function H(H(29))
Taro's multivariable Ackermann function A(3,A(3,299)) A(3,A(3,300))
Pound-Star Notation #*((1))*(0,4,0,0,7)*6 #*((1))*(1,4,0,0,7)*6
BEAF {1000,1+{10,90}}
Hyper-E notation E(3+3E90)
Bashicu matrix system (0)(1)[298] (0)(1)[299]
Hyperfactorial array notation (63!)! (64!)!
Fast-growing hierarchy $$f_2(f_2(294))$$ $$f_2(f_2(295))$$
Hardy hierarchy $$H_{\omega^22}(294)$$ $$H_{\omega^22}(295)$$
Slow-growing hierarchy $$g_{\omega^{\omega^{\omega9}3+3}}(10)$$

## Sources

1. Illion Numbers by Jonathan Bowers