FANDOM


An unvigintiducentillion is equal to \(10^{666}\) in short scale or \(10^{1326}\) in long scale.[1][2]

ApproximationsEdit

For short scale:

Notation Lower bound Upper bound
Scientific notation \(1\times10^{666}\)
Arrow notation \(10\uparrow666\)
Steinhaus-Moser Notation 273[3] 274[3]
Copy notation 9[666] 1[667]
Taro's multivariable Ackermann function A(3,2209) A(3,2210)
Pound-Star Notation #*((12))*16 #*((13))*16
BEAF {10,666}
Hyper-E notation E666
Bashicu matrix system (0)(1)[8] (0)(1)[9]
Hyperfactorial array notation 320! 321!
Fast-growing hierarchy \(f_2(2201)\) \(f_2(2202)\)
Hardy hierarchy \(H_{\omega^2}(2201)\) \(H_{\omega^2}(2202)\)
Slow-growing hierarchy \(g_{\omega^{\omega^26+\omega6+6}}(10)\)

For long scale:

Notation Lower bound Upper bound
Scientific notation \(1\times10^{1326}\)
Arrow notation \(10\uparrow1326\)
Steinhaus-Moser Notation 492[3] 493[3]
Copy notation 9[1326] 1[1327]
Taro's multivariable Ackermann function A(3,4401) A(3,4402)
Pound-Star Notation #*((569))*21 #*((570))*21
BEAF {10,1326}
Hyper-E notation E1326
Bashicu matrix system (0)(1)[9] (0)(1)[10]
Hyperfactorial array notation 570! 571!
Fast-growing hierarchy \(f_2(4392)\) \(f_2(4393)\)
Hardy hierarchy \(H_{\omega^2}(4392)\) \(H_{\omega^2}(4393)\)
Slow-growing hierarchy \(g_{\omega^{\omega^3+\omega^23+\omega2+6}}(10)\)

Sources Edit

  1. [1]
  2. http://sites.google.com/site/largenumbers/home/2-4/2-4-7