FANDOM


Similar to CF's beaf, but more complete.

Linear Arrays

Pretty much of this can be found in http://googology.wikia.com/wiki/User:Cloudy176/Size_N_Arrays

Two row arrays

First, we have {b,p(1)2} = {b,b,b,...,b,b,b} with p entries

Then {b,p,n(1)2} = {b,{b,{b,{...{b,{b,{b,b,n-1(1)2},n-1(1)2},n-1(1)2}...},n-1(1)2},n-1(1)2},n-1(1)2} with p levels and {b,p,1(1)2} = {b,p(1)2}

Then {b,p,n,2(1)2} = {b,b,{b,b,{b,b,{...},2(1)2},2(1)2},2(1)2} with p levels and {b,p,1,2(1)2} = {b,b,{b,b,{b,b,{...}(1)2}(1)2}(1)2} with p levels

In fact, this is almost same as the linear arrays, just that the basic rule is {b,p(1)n} = {b,b,b,...,b,b,b(1)n-1} with p entries and {@(1)1} = {@} where @ is any multi-entry array

Next, {b,p(1)1,2} = {b,b(1){b,b(1){b,b(1){...}}}} with p levels, {b,p(1)n,2} = {b,b,b,...,b,b,b(1)n-1,2} with p entries, etc.

So we can have {b,p(1)1,3}, {b,p(1)1,1,2}, etc.

This gives us to the limit of Two Row Arrays

Planar Arrays

We define {b,p(1)(1)2} = {b,b(1)b,b,b,...,b,b,b} with p entries on second row

We also have {b,p,2(1)(1)2}, {b,p,n(1)(1)2}, {b,p,1,2(1)(1)2}, etc.

Then {b,p(1)2(1)2} = {b,b,b,...,b,b,b(1)(1)2} with p entries

-- UNDER CONSTRUCTION --

Planned parts

1. Linear arrays (complete)

2. Two row arrays (complete)

3. Planar Arrays (in progress)

4. Planes, flunes, realms, and rest of dimensional

5. Multi-entry dimensional

6. Dimensional Dimensional

7. Rest of Tetrational

8. Pentational, hexational, heptational,...

9. Linear array arrays

10. Planar and Dimensional Array Arrays

11. Tetrational Array Arrays

12. Linear Array Array Arrays

13. Rest of & operator

14. Basic / legions

15. && operator

16-17. Multiple &'s and structures of &'s

16-17. Basic L spaces

18. L spaces up to limit of tetrational

19. @ operator

20. Multiple @'s, structures of @'s and L2 space

21. % and # operators and continuing

22. L strucures

23. Up to the limits of BEAF: Square-bracketed L arrays

24. Extending BEAF: More types of legions and the L hierarchy

25. Review and conclussion

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.