TaN (f(n) = f0(n) in FGH) FGH
f(n)<0> f0(n)
f(n)<1> f0(f0(n))
f(n)<2> f0(f0(f0(n)))
f(n)<3> f0(f0(f0(f0(n))))
f(n)<4> f0(f0(f0(f0(f0(n)))))
f(n)<0,1> f1(n)
f(n)<1,1> f1(f1(n))
f(n)<2,1> f1(f1(f1(n)))
f(n)<0,2> f2(n)
f(n)<1,2> f2(f2(n))
f(n)<0,3> f3(n)
f(n)<0,4> f4(n)
f(n)<0,0,1> fω(n)
f(n)<1,0,1> fω(fω(n))
f(n)<0,1,1> fω+1(n)
f(n)<0,2,1> fω+2(n)
f(n)<0,0,2> fω2(n)
f(n)<0,1,2> fω2+1(n)
f(n)<0,0,3> fω3(n)
f(n)<0,0,0,1> fω2(n)
f(n)<0,1,0,1> fω2+1(n)
f(n)<0,0,1,1> fω2(n)
f(n)<0,0,0,2> fω22(n)
f(n)<0,0,0,0,1> fω3(n)
f(n)<0,0,0,0,2> fω32(n)
f(n)<0,0,0,0,0,1> fω4(n)
f(n)<0,0,0,0,0,0,1> fω5(n)
f(n)<0<1>1> fωω(n)
f(n)<1<1>1> fωω(fωω(n))
f(n)<0,1<1>1> fωω+1(n)
f(n)<0,2<1>1> fωω+2(n)
f(n)<0,0,1<1>1> fωω(n)
f(n)<0<1>2> fωω2(n)
f(n)<0,1<1>2> fωω2+1(n)
f(n)<0<1>3> fωω3(n)
f(n)<0<1>0,1> fωω+1(n)
f(n)<0<1>0,2> fωω+12(n)
f(n)<0<1>0,0,1> fωω+2(n)
f(n)<0<1>0<1>1> fωω2(n)

Under Construction!

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.