Googology Wiki
Advertisement
Googology Wiki

See s(n) map.

Definition[]

s(1)[f(n)] = fn(n)

s(n)[f(m)] = s(n-1)m[f(m)] if n > 1

With only two arguments, this reaches ωω-level recursion.

It's standard to set f(n) = n+1 in this case--using a pre-defined function would be rather naive.

Comparison to FGH if f(n) = n+1[]

f(n) = n+1 = f0(n)

f2(n) = n+2

f3(n) = n+3

fa(n) = n+a

s(1)[f(n)] = fn(n) = 2n = f1(n)

s(1)2[f(n)] = s(1)[fn(n)] = s(1)[2n] = 2n×n = f2(n)

s(1)3[f(n)] = s(1)[2n×n] = f3(n) > (2↑)n↑n

s(1)4[f(n)] = f4(n) > (2↑)nn

s(1)a[f(n)] = fa(n) > (2↑a)nan

s(2)[f(n)] = s(1)n[f(n)] = fω(n)

s(1)[s(2)[f(n)]] = s(2)[f(s(2)[f(s(2)[f(...s(2)[f(s(2)[f(n)])]...)])])] with n "s(2)"s = fω+1(n)

s(1)2[s(2)[f(n)]] = fω+2(n)

s(1)a[s(2)[f(n)]] = fω+a(n)

s(2)2[f(n)] = s(1)n[s(2)[f(n)]] = fω2(n)

s(1)a[s(2)2[f(n)]] = fω2+a(n)

s(2)3[f(n)] = s(1)n[s(2)2[f(n)]] = fω3(n)

s(2)a[f(n)] = s(1)n[s(2)a-1[f(n)]] = fωa(n)

s(1)a[s(2)b[f(n)]] = fωb+a(n)

s(3)[f(n)] = s(2)n[f(n)] = fω2(n)

s(1)a[s(3)[f(n)]] = fω2+a(n)

s(2)a[s(3)[f(n)]] = fω2+ωa(n)

s(3)a[f(n)] = fω2a(n)

s(4)[f(n)] = s(3)n[f(n)] = fω3(n)

s(5)[f(n)] = s(4)n[f(n)] = fω4(n)

s(a)[f(n)] = s(a-1)n[f(n)] = fωa-1(n)

s(1)a[s(2)b[s(3)c[s(4)d[s(5)e[...]]]]] = f...+ω4e3d2c+ωb+a(n)

Limit: s(n+1)[f(n)] = fωω(n)

Extension[]

In the definition of Fish number 3, an extension is made called ss(n) map. It is defined as:

ss(1)[f(n)] = s(n)[f(n)]

ss(n)[f(m)] = ss(n-1)m[f(m)] if m > 1

Unfortunately, at this point, this function can no longer be compared directly to FGH, due to the fact that:

s(n+1)[f(n)] = fωn(n) = fωω(n)

s(n)[f(n)] = fωn-1(n) ≠ fωω(n)

But that's not necessary.

In this extension, ss(n) can just be expressed as s(n,2). Then, we can define the following extension based off of this:

s(a,1)[f(n)] = s(a)[f(n)]

s(1,b)[f(n)] = s(n,b-1)[f(n)]

s(a,b)[f(n)] = s(a-1,b)n[f(n)]

Or, actually, generalize this to any number of arguments:

(@ represents the rest of the array, or none)

s(@,1)[f(n)] = s(@)[f(n)]

s(1,1,1,...,1,1,1,a,@)[f(n)] = s(n,n,n,...,n,n,n,a-1,@)[f(n)]

s(a,@)[f(n)] s(a-1,@)n[f(n)]

Comparison to FGH if f(n) = n+1[]

Note: All expressions are actually equal to significantly less than their approximations. s(1,2)[f(n)] = s(n)[f(n)] = fωn-1(n) ≈ fωω(n)

s(1)[s(1,2)[f(n)]] ≈ fωω+1(n)

s(2)[s(1,2)[f(n)]] ≈ fωω(n)

s(3)[s(1,2)[f(n)]] ≈ fωω2(n)

s(a)[s(1,2)[f(n)]] ≈ fωωa-1(n)

s(1,2)a[f(n)] ≈ fωωa(n)

s(2,2)[f(n)] = s(1,2)n[f(n)] ≈ fωω+1(n)

s(a,2)[f(n)] = s(a-1,2)n[f(n)] ≈ fωω+a-1(n)

s(1,3)[f(n)] = s(n,2)[f(n)] ≈ fωω+n-1(n) ≈ fωω2(n)

s(a)[s(1,3)[f(n)]]  fωω2a-1(n)

s(a,2)[s(1,3)[f(n)]]  fωω2ω+a-1(n)

s(2,3)[f(n)] = s(1,3)n[f(n)] ≈ fωω2+1(n)

s(a,3)[f(n)] = s(a-1,3)n[f(n)] ≈ fωω2+a-1(n)

s(1,4)[f(n)] = s(n,3)[f(n)]  fωω3(n)

s(1,a)[f(n)] = s(n,a-1)[f(n)]  fωω(a-1)(n)

s(1,1,2)[f(n)] = s(n,n)[f(n)] ≈ fωω(n-1)+n(n) = fωωn(n) = fωω2(n)

s(a)[s(1,1,2)[f(n)]]  fωω2a-1(n)

s(1,a)[s(1,1,2)[f(n)]]  fωω2ω(a-1)(n)

s(2,1,2)[f(n)] = s(1,1,2)n[f(n)] ≈ fωω2+1(n)

s(a,1,2)[f(n)] = s(a-1,1,2)n[f(n)] ≈ fωω2+a-1(n)

s(1,2,2)[f(n)] = s(n,1,2)[f(n)] ≈ fωω2+n-1(n) ≈ fωω2(n)

s(2,2,2)[f(n)] = s(1,2,2)n[f(n)] ≈ fωω2+ω+1(n)

s(1,3,2)[f(n)] = s(n,2,2)[f(n)] ≈ fωω2+ω2(n)

s(1,4,2)[f(n)] = s(n,3,2)[f(n)] ≈ fωω2+ω3(n)

s(1,a,2)[f(n)] = s(n,a-1,2)[f(n)] ≈ fωω2+ω(a-1)(n)

s(a,b,2)[f(n)] = s(a-1,b,2)n[f(n)] ≈ fωω2+ω(b-1)+a(n)

s(1,1,3)[f(n)] = s(n,n,2)[f(n)] ≈ fωω2+ω(n-1)+n(n) = fωω2+ωn(n) = fωω22(n)

s(1,1,4)[f(n)] = s(n,n,3)[f(n)] ≈ fωω23(n)

s(1,1,a)[f(n)] = s(n,n,a-1)[f(n)] ≈ fωω2(a-1)(n)

s(1,1,1,2)[f(n)] = s(n,n,n)[f(n)] ≈ fωω2(n-1)(n) ≈ fωω3(n)

s(1,1,1,1,2)[f(n)] s(n,n,n,n)[f(n)] ≈ fωω4(n)

Limit: s(n,n,n,...(n "n"s)...,n,n,n)[f(n)] ≈ fωωn(n) = fωωω(n)

Well, that was disappointing. I expected fε0(n). Oh well. Still a proper and valid extension.

Advertisement