FANDOM


\(\psi(\Omega_\omega)\) to TFB

(0,0,0)(1,1,1) has level \(\psi(\Omega_\omega)\) 

(0,0,0)(1,1,1)(1,1,0) has level \(\psi(\Omega_\omega+1)\)

(0,0,0)(1,1,1)(1,1,0)(2,1,0) has level \(\psi(\Omega_\omega+\Omega)\)

(0,0,0)(1,1,1)(1,1,0)(2,2,0) has level \(\psi(\Omega_\omega+\psi_1(0))\)

(0,0,0)(1,1,1)(1,1,0)(2,2,1) has level \(\psi(\Omega_\omega+\psi_1(\Omega_\omega))\)

(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0) has level \(\psi(\Omega_\omega+\psi_1(\Omega_\omega+1))\)

(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0) has level \(\psi(\Omega_\omega+\Omega_2)\)

(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0) has level \(\psi(\Omega_\omega+\Omega_3)\)

(0,0,0)(1,1,1)(1,1,1) has level \(\psi(\Omega_\omega*2)\)

(0,0,0)(1,1,1)(2,0,0) has level \(\psi(\Omega_\omega*\omega)\)

(0,0,0)(1,1,1)(2,1,0) has level \(\psi(\Omega_\omega*\Omega)\)

(0,0,0)(1,1,1)(2,1,0)(3,2,1) has level \(\psi(\Omega_\omega*\psi_1(\Omega_\omega))\)

(0,0,0)(1,1,1)(2,1,0)(3,2,1)(3,2,1) has level \(\psi(\Omega_\omega*\psi_1(\Omega_\omega*2))\)

(0,0,0)(1,1,1)(2,1,0)(3,2,1)(4,2,0) has level \(\psi(\Omega_\omega*\Omega_2)\)

(0,0,0)(1,1,1)(2,1,1) has level \(\psi(\Omega_\omega^2)\)

(0,0,0)(1,1,1)(2,1,1)(2,1,1) has level \(\psi(\Omega_\omega^3)\)

(0,0,0)(1,1,1)(2,1,1)(3,0,0) has level \(\psi(\Omega_\omega^\omega)\)

(0,0,0)(1,1,1)(2,1,1)(3,1,1) has level \(\psi(\Omega_\omega^{\Omega_\omega})\)

(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1) has level \(\psi(\Omega_\omega^{\Omega_\omega^2})\)

(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1) has level \(\psi(\Omega_\omega^{\Omega_\omega^{\Omega_\omega}})\)

TFB to  \(\psi(\psi_I(0))\)

(0,0,0)(1,1,1)(2,2,0) has level TFB

(0,0,0)(1,1,1)(2,2,0)(2,2,0) has level \(\psi(\psi_\omega(1))\)

(0,0,0)(1,1,1)(2,2,0)(3,1,0) has level \(\psi(\psi_\omega(\Omega))\)

(0,0,0)(1,1,1)(2,2,0)(3,1,1) has level \(\psi(\psi_\omega(\Omega_\omega))\)

(0,0,0)(1,1,1)(2,2,0)(3,2,0) has level \(\psi(\Omega_{\omega+1})\)

(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,2,0) has level \(\psi(\Omega_{\omega+1}^{\Omega_{\omega+1}})\)

(0,0,0)(1,1,1)(2,2,0)(3,3,0) has level \(\psi(\psi_{\omega+1}(0))\)

(0,0,0)(1,1,1)(2,2,0)(3,3,1) has level \(\psi(\Omega_{\omega*2})\)

(0,0,0)(1,1,1)(2,2,0)(3,3,1)(4,4,0)(5,5,1) has level \(\psi(\Omega_{\omega*3})\)

(0,0,0)(1,1,1)(2,2,1) has level \(\psi(\Omega_{\omega^2})\)

(0,0,0)(1,1,1)(2,2,1)(1,1,1) has level \(\psi(\Omega_{\omega^2}+\Omega_\omega)\)

(0,0,0)(1,1,1)(2,2,1)(2,2,0) has level \(\psi(\Omega_{\omega^2}+\psi_\omega(\Omega_{\omega^2}+1))\)

(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0) has level \(\psi(\Omega_{\omega^2}+\Omega_{\omega+1})\)

(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,0) has level \(\psi(\Omega_{\omega^2}+\psi_{\omega+1}(0))\)


(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,0)(4,3,0) has level \(\psi(\Omega_{\omega^2}+\psi_{\omega+1}(0))\)

If this pattern countiunes, (0,0,0)(1,1,1)(2,2,2) might be equal to \(\psi(\Omega_{\omega^\omega})\).

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.