FANDOM


Selfgogopyr is defined as the gogopyrth gogopyrgonal pyramidal number. The term was coined by Daniel Corrêa.

Selfgogopyr is computed using the general formula for an r-gonal pyramidal number described below:

\([3.n^{2} + n^{3}.(r-2) - n.(r-5)]/6\)

where \(r = n = gogopyr\).

Selfgogopyr has 1597 digits, and according to the calculations performed using BCalc configured to show 2011 digits, the full decimal form is:

1286008230452674897119341563786008230452674897119341563786008230452674897119341563786008230452674896090534979423868312757201646090534979423868312757201646090534979423868312757201646090534979423868313168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946424897119341563786008230452674897119341563786008230452674897119341563786008230452674897119341563786008744855967078189300411522633744855967078189300411522633744855967078189300411522633744855967078189303909465020576131687242798353909465020576131687242798353909465020576131687242798353909465020576131686499485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930074588477366255144032921810699588477366255144032921810699588477366255144032921810699588477366255144047016460905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794236136831275720164609053497942386831275720164609053497942386831275720164609053497942386831275720164609133230452674897119341563786008230452674897119341563786008230452674897119341563786008230452674897119370164609053497942386831275720164609053497942386831275720164609053497942386831275720164609053497942385227623456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456504629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629680555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.