FANDOM


Click to play

0#n = f1(n) (Exactly!)

1#n = f2(n) (Exactly!)

m#n = fm+1(n) (Exactly!)

(0)#n ~ fw(n)

(0)1#n ~ fw+1(n)

(0)(0)#n ~ fw*2(n)

(1)#n ~ fw2(n)

(1)(0)#n ~ fw2+1(n)

(1)(1)#n ~ fw2*2(n)

(2)#n ~ fw3(n)

((0))#n ~ fww(n)

((1))#n ~ fww2(n)

(((0)))#n ~ fwww(n)

((((0))))#n ~ fwwww(n)

(0,1)#n ~ fe0(n)

(1,1)#n ~ fe0*w(n)

((0,1),1)#n ~ f(e0)2(n)

((0,1)(0,1),1)#n ~ f(e0)3(n)

((1,1),1)#n ~ f(e0)w(n)

(((0,1),1),1)#n ~ f(e0)e0(n)

(((1,1),1),1)#n ~ f(e0)e0*w(n)

((((0,1),1),1),1)#n ~ f(e0)(e0)2(n)

(((((0,1),1),1),1),1)#n ~ f(e0)(e0)e0(n)

(0,2)#n ~ fe1(n)

(0,3)#n ~ fe2(n)

(0,(0))#n ~ few(n)

(0,(0,1))#n ~ fee0(n)

(0,(0,(0,1)))#n ~ feee0(n)

(0,0,1)#n ~ fz0(n)

(0,1,1)#n ~ fez0+1(n)

(0,(0,0,1),1)#n ~ fez0*2(n)

(0,0,2)#n ~ fz1(n)

(0,0,0,1)#n ~ feta0(n)

(0[1]1)#n ~ fphi(w,0)(n)

(0,1[1]1)#n ~ fphi(w,0)*e0(n)

(0[1]2)#n ~ fphi(w,0)w(n)

(0[1](0))#n ~ fphi(w,0)w2(n)

(0[1]0,1)#n ~ fphi(w,0)e0(n)

(0[1]0[1]1)#n ~ fphi(w,0)phi(w,0)(n)

And so on...

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.