Bracket Notation

\(\circ\) will be anything

\(\bullet\) is group of brackets

0. \(a$\) = \(a\)

1. \(a$b\circ\) = \((a+b)$\circ\)

2. \(a$\bullet [0]\circ \bullet\) = \(a$\bullet a\circ \bullet\)

3. \(a$\bullet [b]\circ \bullet\) = \(a$\bullet \underbrace{[b-1]...[b-1]}_{a}\circ \bullet\)

Extended Bracket Notation

3a. \(a$\bullet [b]_c\circ \bullet\) = \(a$\bullet \underbrace{[b-1]_c ... [b-1]_c}_{a}\circ \bullet\), if c != 1

4. \(a$\bullet [\circ]_1 \bullet\) = \(a$\bullet [\circ] \bullet\)

5. \(a$\bullet [0]_c\circ \bullet\) = \(a$\bullet [... \bullet [0]_{c-1}\circ \bullet ...]_{c-1}\circ \bullet\) (a nested)

Linear Array Notation

6. \(a$\bullet [b(\circ)0...0,c+1 \circ]_1\circ \bullet\) = \(a$\bullet [[0](\circ)0...[0(\circ)0...0,c \circ]_{...[0(\circ)0...0,c \circ]...},c \circ]_1\circ \bullet\) (b \([0(\circ)0...0,c \circ]\)'s)

7. \(a$\bullet [\circ 1]_\circ \bullet\) = \(a$\bullet [\circ]_\circ \bullet\)

Dimensional Array Notation

8. \(a$\bullet [b(\circ)0...0(d+1)c+1 \circ]_1\circ \bullet\) = \(a$\bullet [[0](\circ)0...[0](d)[0]...[0](d)[0](d+1)c \circ]_1\circ \bullet\) (b [0] between (d)'s)

9. \(a$\bullet [\circ x(0)y \circ]_\circ \bullet\) = \(a$\bullet [\circ x,y \circ]_\circ \bullet\)

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.