FANDOM


Here a notation about FGH.

Types of @

@ can be Array.

@2 can only [] brackets that even number of brackets.

@3 is equal to [1].

@4 is row of zeros using between /@ seperator.

@5 is row of @ using between /@ seperator.

Number Notation

Target: \(\omega\)

Reaching \(\omega\)

FGH(a,0) = a+1

FGH(a+b,0) = a+(b+1)

FGH(@,0) = @+1

FGH(1,@-1) = FGH(1,@) = 1

FGH(FGH(2,0),0) = FGH(2,1) = 4

FGH(@,@,n+1) = FGH(FGH(@,@,n),n-1)

FGH(@,@,1) = FGH(@,@-1)

FGH(n,m) = FGH(n,m,n)

Rules of Number Notation

1. FGH(Any,0,Any) = Any+1, using 1st Any.

2. FGH(n,n@) = FGH(n,n@,n)

3. FGH(Any,n+1@,1) = FGH(Any,n@)

4. FGH(Any,n+1@,m+1) = FGH(FGH(Any,n+1@,m),n@)

Bracket Notation

Target: \(\varepsilon_0\)

Reaching \(\varepsilon_0\)

FGH(a,[1]@) = FGH(a,a)

FGH(a,b+1@) = FGH(FGH(...FGH(FGH(a,b@),b@)...,b@),b@) (a nested)

FGH(a,[1]@) = FGH(a,a@)

FGH(a,[b+1]@) = FGH(a,[b][b]...[b][b]@) (a b's)

[@+1](a) = [@][@]...[@][@] (a @'s)

Rules of Bracket Notation

5. FGH(n,@2[1]@2) = FGH(n,@2n@2)

6. FGH(n,@2[m+1@]@2) = FGH(n,@2[m@][m@]...[m@][m@]@2) (n [m@]'s)

7. FGH(Any,@20@2) = FGH(Any,@2@2)

Array-Type Notation

Target: \(\Gamma_0\)

Reaching \(\Gamma_0\)

FGH(a,[~@3]) = FGH(a,[~a-1]), where ~ > 0.

FGH(a,@2[b[c@]]@2) = FGH(a,@2[c@]@2), let b and c are array then c>b.

FGH(a,[10]) = FGH(a,[[...[[1]]...]]) (a nested [] brackets)

FGH(a,[1[1@]]) = FGH(a,[1@][1@]...[1@][1@]) (a [1@]'s)

FGH(a,[[1[1@]]]) = FGH(a,[[1@][1@]...[1@][1@]]) (a [1@]'s)

FGH(a,[1@+1]) = FGH(a,[[...[[1[1b]]]...]]) (a nested type 0 [] brackets)

FGH(a,[1[10]]) = FGH(a,[1[[...[[1]]...]]]) (a nested [] brackets)

FGH(a,[20]) = FGH(a,[1[1...[1[10]]...]]) (a nested type 1 [] brackets)

FGH(a,[2@+1]) = FGH(a,[1[1...[1[11[2@]]]...]]) (a nested type 1 [] brackets)

FGH(a,[@+10]) = FGH(a,[@[@...[@[@0]]...]]) (a nested type @ [] brackets)

FGH(a,[*@+1]) = FGH(a,[*(a)1[*@]]), if * don't have number notation on the left.

[10](1) = [1]

[@+10](1) = [@0]

[@+1@+1](1) = [@1[@+1@]]

[@+1@](a+1) = [@[@+1@](a)]

Rules of Array-Type Notation

8. FGH(Any,@2[b[c@]]@2) = FGH(Any,@2[c@]@2), let b and c are array (same at @) then c>b.

9. FGH(Any,@2[0@]2) = FGH(Any,@2[@]2).

10. FGH(n,@2[10]@2) = FGH(n,@2[...[1]...]@2) (a nested [] brackets)

11. FGH(n,@2[@+1|@...0]@2) = FGH(n,@2[@|@......[@|@...0]...]@2) (a nested type m@ [] brackets)

12. FGH(n,@2[@+1|@...@+1]@2) = FGH(n,@2[@|@......[@|@...1[@+1|@...@]]...]@2) (a nested type m@ [] brackets)

13. FGH(n,@2[~@3]@2) = FGH(n,@2[~n-1]@2), where ~ > 0 and ~ is array and all entries have between | seperator.

14. FGH(n,@2[*l+1]@2) = FGH(n,@2[*(n)1[*@l]]@2), if * don't have number notation on the left.

Multi-entry Notation

Target: \(\vartheta(\Omega^\omega)\)

Reaching \(\vartheta(\Omega^\omega)\)

FGH(a,[0/10]) = FGH(a,[[...[[1]0]...0]0]) (a nested)

FGH(a,[[0/10]@+1]) = FGH(a,[[...[[0]0]...0]1[[0|10]@]])

FGH(a,[@+1[0/10]0]) = FGH(a,[@[0|10]...[@[0|10]0]...]) (a nested)

FGH(a,[0/1@+1]) = FGH(a,[[...[[[0/1@]1]0]...0]0]) (a+1 nested)

FGH(a,[@/@...@/@/0@]) = FGH(a,[@/@...@/@@])

FGH(a,[@4/0/@+10]) = FGH(a,[@4/...[@4/0/@0]...|@0]) (a nested)

FGH(a,[@4/0/@+1@+1]) = FGH(a,[@4/1[@4/0/@+1@]/@0])

Rules of Multi-entry Notation

15. FGH(Any,@2[@/.../@/0@]@2) = FGH(Any,@2[@/.../@@]@2)

16. FGH(n,@2[0/10]@2) = FGH(n,@2[[...[[1]0]...0]0]@2) (n nested)

More Rules Coming Soon!

Hyper-entry Notation

Target: \(\vartheta(\Omega^\Omega)\)

Reaching \(\vartheta(\Omega^\Omega)\)

FGH(a,[@5/0@5@]) = FGH(a,[@5/@5@])

FGH(a,[@5/1@+1@]) = FGH(a,[@50/0...0/0/1/1@@])

Rules of Hyper-entry Notation

First I learning Rules of Multi-entry Notation.

Tetrational-Omega Growth Notation

Target: \(\vartheta(\varepsilon_{\Omega+1})\)

More Coming Soon!

My Numbers

Number X-FGH = FGH(X,X)

Bracket X-FGH = FGH(X,[[...[[1]]...]]) (X nested)

Array-Type X-FGH = FGH(X,[[...[[1]0]...0]0]) (X nested)

Multi-entry X-FGH = FGH(X,[0/0...0/10]) (X entries)

Hyper-entry X-FGH = FGH(X,[0/[0/...[0/[0/[1]10]10]...10]10]) (X nested)

Numbers Prefixes

X=?->? Prefix
2 Normal
3 Good
4 Binormal
5 Great
6 Good Normal
7 Excellent
8 Trinormal
9 Bigood
10 Great Normal

See more prefixes at FGH Prefixes.

Note: (n-th Prime Number)^m = (m-th Greek Prefix)(n-th FGH Prefix)

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.