Let's make the numbering system of both the ARRAY and the LEVEL the same.

It's a bit complicated right now.

## Intro

In Part 3, googleaarex mentioned something called a Mega n-bal which is:

It gave me the basis on a multidimensional LEVEL. (I can't really think of anything to make the ARRAY multidimensional but meh)

I tried to make multiple LEVELs but ended up just making them compact by storing them inside a multidimensional LEVEL that contains SEPARATORS.

Things got complicated and I decided to shift the numbering system of the ARRAY and the SEPARATORS into something more reasonable.

Here is an example of how to evaluate:

Indeed, this is very large.

If you didn't get the process, read along.

After the last step shown above, the BASE becomes .

If you're curious about the +1 on the number of arrows, it's because I changed the numbering system so I have to add one to get the right amount of arrows.

Let's look at the rules.

## Even More Rules

Let and represent rest of ARRAY/LEVEL. For , there MUST be a rest of ARRAY/LEVEL but for , it's optional.

Let , , , and be **COUNTING NUMBERS**.

Let '' be ''.

- (You'll notice the shift in the numbering system here)

Three new rules.

The last two bullets are just one rule.

You can see how fast this grows by examining the example earlier. LARGE, right? And that's just .

## Numbers

### Megabal Group

### Megablex Group

### Megadublex Group

### Hyperbal Group

### Hyperblex Group

### Hyperdublex Group

## More Extensions?

Of course there are but I'm going to post them when I feel like it.

For now, don't expect a new part to come out!

## Oh and...

The rules were hard...

Did I miss a rule?

Is a rule wrong?

Comment about it!