FANDOM


I learned mol in my chemistry class. I came up with such silly idea:

"There is a mol. It's 6.02*10^23. If I gathered 1 mol of them, it would get much bigger."

And so on...



\underbrace{a\,mol\,of\quad a\,mol\,of\quad ...\quad a\,mol\,}_\text{a mol}

It means (6.02*10^23)^(6.02*10^23). In googology, it's very tiny. It's just about 10^10^25.1558.

Let Avogadro's Number N_A.

Avogadro=N_A

Di-Avogadro={N_A}^{\,N_A}=N_A\uparrow\uparrow2

Tri-Avogadro={N_A}^{{\,N_A}^{\,N_A}}=N_A\uparrow\uparrow3

...

Mol-Avogadro=N_A \uparrow\uparrow N_A

It has a mol of N_A's, but It's tiny. Just a tetration.

Di-pentogadro=N_A \uparrow\uparrow N_A=N_A\uparrow\uparrow\uparrow2

Tri-pentogadro=N_A\uparrow\uparrow\uparrow3

...

Mol-pentogadro, Di-hexogadro, ... , Mol-hexogadro, Mol-heptogadro, Mol-octogadro, ...

...

Mol-mologadro=N_A\uparrow^{N_A}N_A

A MOL OF UPARROWS! IT IS REALLY REALLY HUGE!!!

But I have chain:

Chaingadro=N_A \rightarrow N_A \rightarrow 2 \rightarrow 2

Tri-Chaingadro=N_A \rightarrow N_A \rightarrow 3 \rightarrow 3

...

Mol-Chaingadro=N_A \rightarrow N_A \rightarrow N_A \rightarrow N_A

But chain doesn't have to have the length of four!

Tri-Chaingadra=N_A \rightarrow N_A \rightarrow N_A

Tetra-Chaingadra=N_A \rightarrow N_A \rightarrow N_A \rightarrow N_A

Penta-Chaingadra=N_A \rightarrow N_A \rightarrow N_A \rightarrow N_A \rightarrow N_A

...

Mol-Chaingadra=\underbrace{N_A \rightarrow N_A \rightarrow \cdot \rightarrow N_A}_\text{NA}

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.