FANDOM


I made most of a PRBN extension a while back, but then I lost it and now I can't be bothered to figure it all out again. I've also been working on a horrifyingly overcomplicated mess I call "columnar mathematics".

Both of those went badly, so I went back to the drawing board and made this instead, which turned out to be a lot easier to make work.

Ultra-F notation is based on using the entity F to substitute subexpressions into themselves, in such a way that the presence of each additional F amplifies the power of the others. F doesn't stand for anything, I just needed some symbol to use.

I used more plain language here than normal -- The rules are a lot easier to work with than they are to formalise.

Basic Definitions

The entity F only makes sense within a subexpression. Outside one, it is undefined.

A subexpression takes the form:

\[(f(F,\&) + n)\]

Where & is another subexpression, and n is a constant term greater than 0.

When a subexpression is the outermost one, or if it contains no F, brackets can be dropped. Brackets are only ever used to denote a subexpression.

f(F,&) has restrictions placed on it. Firstly, the following trivial function is always valid:

\[f(F,\&) = 0\]

Secondly, at least for the purpose of the basic rules, f(F,&) is valid if it can be written as a sum of F and & and/or products of F and & in such a way that there is at most one instance of &. This is the most practical form to write in, because it avoids confusion.

For the purposes of this function, F is treated as a number, and its usual behaviour, which I will explain later, is ignored. For instance, it makes sense to say that F ^ 2 = F * F, but F * F alone is still undefined because it is not a subexpression.

The following are valid subexpressions:

\[6\] Which is valid because f(F,&) = 0 and n = 6 is positive.

\[F + 97\]

Which is valid because f(F,&) = F contains no instances of & and n = 97 is positive.

\[F + (F + 97) + 1\]

Which is valid because f(F,&) = F + & is a sum of F and & contains one instance of &, and n = 1 is positive.

\[F^3 + F\cdot(F + 97) + 10^{100}\]

Which is valid because f(F,&) = F ^ 3 + F * & can be written as F * F * F + F * &, which contains one instance of &, and n = 10 ^ 100 is positive.

Moving on, an expression in Ultra-F consists of one or more layers. The entire contents of each layer must be a single subexpression. They often contain further subexpressions, but they must be nested one within the other.

Layers are separated by |.

Layers are created when an F is "activated", and are destroyed when an "activated" F is removed. The final result is obtained when there is only one layer containing a single number.

An "activated" F is denoted as follows:

\[\hat{F}\]

Note that terms such as F^x and F*x can't be activated, and need to be broken down into products and sums respectively, before any of the subsidiary F can become activated.

Basic Ruleset

1. If the last layer contains at least one F, activate the rightmost F, copy the entire contents of the layer to a new layer, and remove the activated F from the newly created layer. When I say something is "removed", I mean it is replaced with 0, along with any product it is part of.

2. Any subexpressions containing no F are replaced with the constant term they contain.

3. If the last layer is a constant term greater than 1, decrement it and replace the activated F in the previous layer with the subexpression it is immediately within. A term is "immediately within" a subexpression if that subexpression is within all subexpressions that the term is within with the exception of itself, and the term is within that particular subexpression to begin with.

4. If the last layer is 1, remove it and remove the activated F in the previous layer.

Example

Because I've probably done an awful job at explaining what's going on, here are the first few steps in the calculation of F * 2 + 2:

\[F\cdot 2+2\]

\[=F+F+2\]

\[=F+\hat{F}+2|F+2\]

\[=F+\hat{F}+2|\hat{F}+2|2\]

\[=F+\hat{F}+2|(\hat{F}+2)+2|1\]

\[=F+\hat{F}+2|(2)+2\]

\[=F+\hat{F}+2|4\]

\[=F+(F+\hat{F}+2)+2|3\]

\[=F+(F+(F+\hat{F}+2)+2)+2|2\]

\[=F+(F+(F+(F+\hat{F}+2)+2)+2)+2|1\]

\[=F+(F+(F+(F+2)+2)+2)+2\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(F+(2)+2)+2)+2\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(F+4)+2)+2\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(F+(4)+2)+2\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(F+6)+2\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(\hat{F}+6)+2|F+(6)+2\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(\hat{F}+6)+2|F+8\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(\hat{F}+6)+2|\hat{F}+8|8\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(\hat{F}+6)+2|(\hat{F}+8)+8|7\]

\[=F+(F+(F+(\hat{F}+2)+2)+2)+2|F+(F+(\hat{F}+4)+2)+2|F+(\hat{F}+6)+2|((\hat{F}+8)+8)+8|6\]

The final answer is approximately:

\[10^{1568}\]

it terminates i swear


Here's another example:

\[F\uparrow\uparrow F + 3\]

\[F\uparrow\uparrow \hat{F} + 3|3\]

\[F\uparrow\uparrow (F\uparrow\uparrow \hat{F} + 3) + 3|2\]

\[F\uparrow\uparrow (F\uparrow\uparrow (F\uparrow\uparrow \hat{F} + 3) + 3) + 3|1\]

\[F\uparrow\uparrow (F\uparrow\uparrow 3 + 3) + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow F + 3) + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow\uparrow 3 + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrowF + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\hat{F} + 3|3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow F\uparrow\hat{F} + 3) + 3|2\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow F\uparrow(F\uparrow F\uparrow\hat{F} + 3) + 3) + 3|1\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow F\uparrow3 + 3) + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot F] + 3) + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow F\uparrow3 + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot F] + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot \hat{F}] + 3|3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F\cdot \hat{F}] + 3)] + 3|2\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F\cdot \hat{F}] + 3)] + 3)] + 3|1\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F\cdot 3 + 3)] + 3)] + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot F+F\cdot F + 3)] + 3)] + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot F + 3)] + 3)] + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F + 3)] + 3)] + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow 3 + 3)] + 3\]

\[F\uparrow\uparrow (F\uparrow F\uparrow \hat{F} + 3) + 3|F\uparrow F\uparrow\(F\uparrow [F\cdot F\cdot \hat{F}] + 3) + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot F+F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\uparrow [F\cdot \hat{F} + 3)] + 3)] + 3|F\uparrow [F\cdot F\cdot (F\cdot F\cdot F + 3)] + 3\]

aaaaahhhhhhhhhhhhhh


Analysis

\[F + X = X^2\]

\[F + (F + X) + X \geq X^6\]

\[F\cdot 2 + X >\!\!-\ f_2(n)\]

\[F\cdot 2 + (F\cdot 2 + X) + X >\!\!-\ f_3(n)\]

\[F\cdot 3 + X \approx f_\omega(n)\]

\[F\cdot 4 + X \approx f_{\omega^2}(n)\]

\[F\cdot X + X \approx f_{\omega^{\omega}}(n)\]

\[F \uparrow 2 + X \approx f_{\omega^{\omega + 1}}(n)\]

\[F \uparrow 3 + X \approx f_{\omega^{\omega^2 + 1}}(n)\]

\[F \uparrow 4 + X \approx f_{\omega^{\omega^3 + 1}}(n)\]

\[F \uparrow X + X \approx f_{\omega^{\omega^\omega}}(n)\]

\[F \uparrow F + X \approx f_{\omega^{\omega^\omega + 1}}(n)\]

\[F \uparrow F + F + X \approx f_{\omega^{\omega^\omega + 2}}(n)\]

\[F \uparrow F +F\uparrow2 + X \approx f_{\omega^{\omega^\omega + \omega + 1}}(n)\]

\[F \uparrow F \cdot2 + X \approx f_{\omega^{\omega^\omega\cdot2 + 1}}(n)\]

\[F \uparrow [F+1] + X \approx f_{\omega^{\omega^{\omega+1} + 1}}(n)\]

\[F \uparrow [F\cdot2] + X \approx f_{\omega^{\omega^{\omega\cdot2} + 1}}(n)\]

\[F \uparrow F\uparrow2 + X \approx f_{\omega^{\omega^{\omega^2} + 1}}(n)\]

\[F \uparrow\uparrow 3 + X \approx f_{\omega^{\omega^{\omega^\omega} + 1}}(n)\]

\[F \uparrow\uparrow X + X \approx f_{\varepsilon_0}(n)\]

\[F \uparrow\uparrow F + X \approx f_{\omega^{\varepsilon_0+1}}(n)\]

\[F \uparrow\uparrow F + F + X \approx f_{\omega^{\varepsilon_0+2}}(n)\]

\[F \uparrow\uparrow F + F\cdot2 + X \approx f_{\omega^{\varepsilon_0+3}}(n)\]

\[F \uparrow\uparrow F + F\uparrow2 + X \approx f_{\omega^{\varepsilon_0+\omega + 1}}(n)\]

\[F \uparrow\uparrow F + F\uparrow 3 + X \approx f_{\omega^{\varepsilon_0+\omega^2 + 1}}(n)\]

\[F \uparrow\uparrow F + F\uparrow F + X \approx f_{\omega^{\varepsilon_0+\omega^\omega + 1}}(n)\]

\[F \uparrow\uparrow F\cdot2 + X \approx f_{\omega^{\varepsilon_0\cdot2 + 1}}(n)\]

\[F \uparrow\uparrow F\cdot F + X \approx f_{\omega^{\omega^{\varepsilon_0 + 1} + 1}}(n)\]

\[F \uparrow\uparrow F\cdot F \uparrow2 + X \approx f_{\omega^{\omega^{\varepsilon_0 + 2} + 1}}(n)\]

\[F \uparrow\uparrow F\cdot F \uparrow F + X \approx f_{\omega^{\omega^{\varepsilon_0 + \omega} + 1}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow 2 + X \approx f_{\omega^{\omega^{\varepsilon_0 \cdot2} + 1}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow F + X \approx f_{\omega^{\omega^{\omega^{\varepsilon_0+1}} + 1}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow F\uparrow2 + X \approx f_{\omega^{\omega^{\omega^{\varepsilon_0+2}} + 1}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow F\uparrow F + X \approx f_{\omega^{\omega^{\omega^{\varepsilon_0+\omega}} + 1}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow\uparrow2 + X \approx f_{\omega^{\omega^{\omega^{\varepsilon_0\cdot2}} + 1}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow\uparrow3 + X \approx f_{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\cdot2}} + 1}}}(n)\]

\[ [F \uparrow\uparrow F]\uparrow\uparrow X + X \approx f_{\varepsilon_1}(n)\]

\[F \uparrow\uparrow [F\cdot2] + X \approx f_{\omega^{\varepsilon_1+1}}(n)\]

\[F \uparrow\uparrow [F\cdot3] + X \approx f_{\omega^{\varepsilon_2+1}}(n)\]

\[F \uparrow\uparrow [F\cdot X] + X \approx f_{\varepsilon_\omega}(n)\]

\[F \uparrow\uparrow F\uparrow2 + X \approx f_{\omega^{\varepsilon_\omega+1}}(n)\]

\[F \uparrow\uparrow F\uparrow3 + X \approx f_{\omega^{\varepsilon_{\omega^2}+1}}(n)\]

\[F \uparrow\uparrow F\uparrow F + X \approx f_{\omega^{\varepsilon_{\omega^\omega}+1}}(n)\]

\[F \uparrow\uparrow\uparrow3 + X \approx f_{\omega^{\varepsilon_{\varepsilon_0}+1}}(n)\]

\[F \uparrow\uparrow\uparrow X + X \approx f_{\zeta_0}(n)\]

\[F \uparrow\uparrow\uparrow F + X \approx f_{\omega^{\zeta_0+1}}(n)\]

Yay! I've beaten anything Bowers came up with!

Extension 1: Tower-F Notation

This will extend the above to power towers of Fs.

I am going to introduce "weak brackets". These don't indicate a subexpression but instead clarify the order of operations for structures of Fs, much like brackets do in everyday usage. It would be plausible to use the same type of brackets, because, at this level, these structures can be rewritten without constant terms, distinguishing them from subexpressions. However, I'll use square brackets instead because that's less confusing and the distinction will become important later. Weak brackets can be dropped when there's only a single term, just like normal.

Before numbers can start being built, what is an acceptable f(F,&) will need to be reconsidered.

If it contains an &, it will be called h(F,&), while if it doesn't, it will be called g(F). Either of these may be used as an f(F,&).

Base case possibilities:

\[h = \&\]

\[g = 0\]

\[g = F\]

Combining rules:

Let h1, g1, g2 be acceptable in their own right.

\[h = g_1 + h_1\]

\[h = [g_1] \cdot [h_1 + c]\]

\[g = g_1 + g_2\]

\[g = [g_1] \cdot [g_2 + c]\]

Where c is some non-negative integer -- unlike the subexpression's constant, it is allowed to be zero. Trying to add a constant term when objects are added doesn't work, because it doesn't describe any structure of Fs in this case.

I'll use arrows from now on rather than actually writing out towers as superscripts, to make long towers a bit tidier:

\[h = [g_1] \uparrow [h_1 + c]\]

\[g = [g_1] \uparrow [g_2 + c]\]

These rules allow for some rather irregular-looking subexpression forms, such as these:

\[ [F\cdot 3]\uparrow\& + n\]

\[F \cdot [F * 2 + 2] + n\]

As far as I can tell they all have no more than one & and avoid nonsensical forms such as:

\[2 \uparrow F + n\]

\[ [F + &] \cdot [F + 1] + n\]

Everything covered by the base rules is still allowed. There is some degree of redundancy, as the ability to add the constant term c could be removed with no loss in power, and it usually leads to many possible ways to arrive at the same form. For instance:

\[g = [g_1] \cdot [g_2 + c]\]

for g1 = F, g2 = F, c = 0

is the same thing as:

\[g = [g_1] \uparrow [g_2 + c]\]

for g1 = F, g_2 = 0, c = 2

However, I decided to leave it in, because it may become more useful later, I don't know.

One final note on dealing with removed exponents. I'm not sure, but setting F ^ 0 = 1 might cause some weirdness so I've decided to go with this interpretation instead:

\[F \uparrow 0 = 0\]

Using all this, expressions are defined all the way up to:

\[F \uparrow\uparrow n + n\]

Extension 2: Arrow-F Notation

Adding up arrows is fairly straightforward; one would just incorporate the new operations into the function-building rules, which have now become:

\[h = g_1 + h_1\]

\[g = g_1 + g_2\]

\[h = [g_1] \{m\} [h_1 + c]\]

\[g = [g_1] \{m\} [g_2 + c]\]

Where m is some non-negative integer.

We also need this:

\[F\{m\}0 = 0\]

The interpreting rules also need an update. Up until now it has been unambiguous how structures need to be broken down before Fs can be activated.

The h-type structures contain subexpressions which are dealt with first so they can be automatically assumed to not cause problems. The case for g-type addition is already straightforward.

The difficulty is in expressions of the form:

\[g = [g_1] \{m\} [g_2 + c]\]

If c = 0 and g_2 cannot be written as the sum of two terms, Then an F can be activated, and it is the final one in g_2.

If these conditions are not met, structures are rearranged using the following rules until they are:

\[g_1\cdot[g_2 + c] = g_1\cdot g_2 + g_1\cdot c\]

\[g_1\cdot[g_2 + g_3] = g_1\cdot g_2 + g_1\cdot g_3\]

\[g_1\uparrow[g_2 + c] = g_1\uparrow g_2\cdot g_1\uparrow c\]

\[g_1\uparrow[g_2 + g_3] = g_1\uparrow g_2\cdot g_1\uparrow g_3\]

\[g_1\{m\}[g_2 + c] = g_1\{m-1\}g_1\{m\}[g_2 + c-1]\]

\[g_1\{m\}[g_2 + g_3] = [ [g_1\{m\}g_2]\{m\}g_3\]

Where g_2 and g_3 are both present, g_3 specifically refers to the last object of the sum and g_2 refers to the rest of it.

The last rule may seem a bit strange. The rationale is that, when applying hyperoperators to numbers, it can be shown that:

\[a\{m\}(b + c) > (a\{m\}b)\{m\}c > a\{m\}(b + c - 1)\]

where a, m, b, and c are all no less than 2 and at least one of them is greater than 2.

There are better ways to do this, such as Sbiis' climbing method, but those rely heavily on the countably infinite nature of ordinals and so don't work too well here.

It's still a heck of a lot better than creating an exception, though. Using this rule:

\[F \uparrow\uparrow [F \cdot 2] + n\] \[=[F \uparrow\uparrow F] \uparrow\uparrow F] + n\] \[=[F \uparrow\uparrow F] \uparrow\uparrow \hat{F}] + n| n\]

Leads to a growth rate of approximately:

\[f_{\varepsilon_1}(n)\]

While creating an exception and doing this:

\[F \uparrow\uparrow [F \cdot 2] + n\] \[= F \uparrow\uparrow [F + \hat{F}] + n|F \uparrow\uparrow F + n\]

Would end up with a despair-inducingly weaker growth rate of approximately:

\[f_{\omega^{\varepsilon_0 + 2}}(n)\]

Bounding the Great Varbleth

I've managed to come up with a fairly strong lower bound for F * 2 + 100:

\[F\cdot2 + 100 > 100^{e^{959.890763378023\cdot2^{9989}}}\cdot\prod_{n=1}^{10000}(n^{e^{959.890763378023\cdot(2^{9989}-2^{9989-n}-0.5837001483859)}})\]


Results

I decided to go for a naming scheme where most of the roots are modifiers with only the currently most powerful one built into the base word, because this goes further than my other notations and I don't want to confuse myself too badly.

Varbleth Regiment

Varbleth Superseries

\[F + 100 = 10000 = \mbox{Varbleth}\]

\[F + (F + 100) + 100 = 256 = 16,000,800,010,000 = \mbox{Grand Varbleth}\]

\[F + (F + (F + 100) + 100) + 100 = \mbox{Second Varbleth}\]

\[F + \hat{F}+100|4 = F + (F + \hat{F}+ 100) +100|3 = \mbox{Third Varbleth}\]

\[F + \hat{F}+100|5 = F + (F + \hat{F}+ 100) +100|4 = \mbox{Fourth Varbleth}\]

\[F + \hat{F}+100|5 = F + (F + \hat{F}+ 100) +100|5 = \mbox{Fifth Varbleth}\]

\[F + \hat{F}+100|5 = F + (F + \hat{F}+ 100) +100|6 = \mbox{Sixth Varbleth}\]

\[F + \hat{F}+100|5 = F + (F + \hat{F}+ 100) +100|7 = \mbox{Seventh Varbleth}\]

\[F + \hat{F}+100|5 = F + (F + \hat{F}+ 100) +100|8 = \mbox{Eighth Varbleth}\]

Great Varbleth Squadron

Great Varbleth Series

\[F\cdot2 + 100 = \mbox{Great Varbleth} = \mbox{Varbleth-1th Varbleth}\]

\[F\cdot2 + (F + 100) + 100 = \mbox{Grand Great Varbleth}\]

\[F\cdot2 + (F + (F + 100) + 100) + 100 = \mbox{Second Great Varbleth}\]

\[F\cdot2 + (F + \hat{F} + 100) + 100|3 = \mbox{Third Great Varbleth}\]

\[F\cdot2 + (F + \hat{F} + 100) + 100|4 = \mbox{Fourth Great Varbleth}\]


\[F\cdot2 + (F\cdot2 + 100) + 100 = \mbox{Great Great Varbleth} = \mbox{Grand Great Varbeth-th Great Varbleth}\]

\[F\cdot2 + (F\cdot2 + (F + 100) + 100) + 100 = \mbox{Grand Great Great Varbleth}\]

\[F\cdot2 + (F\cdot2 + (F + (F + 100) + 100) + 100) + 100 = \mbox{Second Great Great Varbleth}\]

\[F\cdot2 + (F\cdot2 + (F + \hat{F} + 100) + 100) + 100|3 = \mbox{Third Great Great Varbleth}\]

\[F\cdot2 + (F\cdot2 + (F + \hat{F} + 100) + 100) + 100|4 = \mbox{Fourth Great Great Varbleth}\]


\[F\cdot2 + \hat{F} + 100|3 = \mbox{Three-ex-Great Varbleth}\]

\[F\cdot2 + \hat{F} + 100|4 = \mbox{Four-ex-Great Varbleth}\]

\[F\cdot2 + \hat{F} + 100|5 = \mbox{Five-ex-Great Varbleth}\]

\[F\cdot2 + \hat{F} + 100|6 = \mbox{Six-ex-Great Varbleth}\]

Awesome Varbleth Series

\[F\cdot3 + 100 = \mbox{Awesome Varbleth} = \mbox{Great Varbleth-ex-Great Varbleth}\]

\[F\cdot3 + (F + 100) + 100 = \mbox{Grand Awesome Varbleth}\]

\[F\cdot3 + (F + (F + 100) + 100) + 100 = \mbox{Second Awesome Varbleth}\]

\[F\cdot3 + (F\cdot2 + 100) + 100 = \mbox{Great Awesome Varbleth}\]

\[F\cdot3 + (F\cdot2 + (F\cdot2 + 100) + 100) + 100 = \mbox{Great Great Awesome Varbleth}\]

\[F\cdot3 + (F\cdot2 + \hat{F} + 100) + 100|3 = \mbox{Three-ex-Great Awesome Varbleth}\]


\[F\cdot3 + (F\cdot3 + 100) + 100 = \mbox{Awesome Awesome Varbleth}\]

\[F\cdot3 + (F\cdot3 + (F + 100) + 100) + 100 = \mbox{Grand Awesome Awesome Varbleth}\]

\[F\cdot3 + (F\cdot3 + (F\cdot2 + 100) + 100) + 100 = \mbox{Great Awesome Awesome Varbleth}\]


\[F\cdot3 + \hat{F} + 100|3 = \mbox{Three-ex-Awesome Varbleth}\]

\[F\cdot3 + \hat{F} + 100|4 = \mbox{Four-ex-Awesome Varbleth}\]

\[F\cdot3 + \hat{F} + 100|5 = \mbox{Five-ex-Awesome Varbleth}\]

Fantastic Varbleth Series

\[F\cdot4 + 100 = \mbox{Fantastic Varbleth} = \mbox{Awesome Varbleth-ex-Awesome Varbleth}\]

\[F\cdot4 + (F + 100) + 100 = \mbox{Grand Fantastic Varbleth}\]

\[F\cdot4 + (F\cdot2 + 100) + 100 = \mbox{Great Fantastic Varbleth}\]

\[F\cdot4 + (F\cdot3 + 100) + 100 = \mbox{Awesome Fantastic Varbleth}\]

\[F\cdot4 + (F\cdot4 + 100) + 100 = \mbox{Fantastic Fantastic Varbleth}\]

\[F\cdot4 + \hat{F} + 100|3 = \mbox{Three-ex-Fantastic Varbleth}\]


\[F\cdot5 + 100 = \mbox{Amazing Varbleth}\]

\[F\cdot5 + (F + 100) + 100 = \mbox{Grand Amazing Varbleth}\]

\[F\cdot5 + (F\cdot2 + 100) + 100 = \mbox{Great Amazing Varbleth}\]

\[F\cdot5 + (F\cdot3 + 100) + 100 = \mbox{Awesome Amazing Varbleth}\]

\[F\cdot5 + (F\cdot4 + 100) + 100 = \mbox{Fantastic Amazing Varbleth}\]

\[F\cdot5 + (F\cdot5 + 100) + 100 = \mbox{Amazing Amazing Varbleth}\]

\[F\cdot5 + \hat{F} + 100|3 = \mbox{Three-ex-Amazing Varbleth}\]


\[F\cdot6 + 100 = \mbox{Incredible Varbleth}\]

\[F\cdot7 + 100 = \mbox{Glorious Varbleth}\]

\[F\cdot8 + 100 = \mbox{Unreal Varbleth}\]

\[F\cdot9 + 100 = \mbox{Heavenly Varbleth}\]

\[F\cdot10 + 100 = \mbox{Unfathomable Varbleth}\]

Varblethduexis Squadron

Eventually we can use Present Draconian suffixes to denote nested F-multiplications. I know I already used these for my PRBN numbers but who cares:

Varblethduexis Series

\[F\cdot100 + 100 = \mbox{Varblethduexis}\]

\[F\cdot(F + 100) + 100 = \mbox{Grand Varblethduexis}\]

\[F\cdot(F + (F + 100) + 100) + 100 = \mbox{Second Varblethduexis}\]

\[F\cdot(F + \hat{F} + 100) + 100|3 = \mbox{Third Varblethduexis}\]

\[F\cdot(F + \hat{F} + 100) + 100|4 = \mbox{Fourth Varblethduexis}\]

\[F\cdot(F + \hat{F} + 100) + 100|5 = \mbox{Fifth Varblethduexis}\]


\[F\cdot(F\cdot2 + 100) + 100 = \mbox{Great Varblethduexis}\]

\[F\cdot(F\cdot3 + 100) + 100 = \mbox{Awesome Varblethduexis}\]

\[F\cdot(F\cdot4 + 100) + 100 = \mbox{Fantastic Varblethduexis}\]

\[F\cdot(F\cdot5 + 100) + 100 = \mbox{Amazing Varblethduexis}\]

Varblethtricis Series

\[F\cdot(F\cdot100 + 100) + 100 = \mbox{Varblethtricis}\]

\[F\cdot(F\cdot100 + (F + 100) + 100) + 100 = \mbox{Grand Varblethtricis}\]

\[F\cdot(F\cdot100 + (F + (F + 100) + 100) + 100) + 100 = \mbox{Second Varblethtricis}\]

\[F\cdot(F\cdot100 + (F + \hat{F} + 100) + 100|3 = \mbox{Third Varblethtricis}\]

\[F\cdot(F\cdot100 + (F + \hat{F} + 100) + 100|4 = \mbox{Fourth Varblethtricis}\]

\[F\cdot(F\cdot100 + (F + \hat{F} + 100) + 100|5 = \mbox{Fifth Varblethtricis}\]


\[F\cdot(F\cdot(F\cdot2 + 100) + 100) + 100 = \mbox{Great Varblethtricis}\]

\[F\cdot(F\cdot(F\cdot3 + 100) + 100) + 100 = \mbox{Awesome Varblethtricis}\]

\[F\cdot(F\cdot(F\cdot4 + 100) + 100) + 100 = \mbox{Fantastic Varblethtricis}\]

\[F\cdot(F\cdot(F\cdot5 + 100) + 100) + 100 = \mbox{Amazing Varblethtricis}\]

Varblethvurlex Series

\[F\cdot\hat{F} + 100|4 = \mbox{Varblethvurlex}\]

\[F\cdot(F\cdot(F\cdot100 + (F + 100) + 100) + 100) + 100 = \mbox{Grand Varblethvurlex}\]

\[F\cdot(F\cdot(F\cdot100 + (F\cdot2 + 100) + 100) + 100) + 100 = \mbox{Great Varblethvurlex}\]

\[F\cdot(F\cdot(F\cdot100 + (F\cdot3 + 100) + 100) + 100) + 100 = \mbox{Awesome Varblethvurlex}\]


\[F\cdot\hat{F} + 100|5 = \mbox{Varblethfiefen}\]

\[F\cdot(F\cdot(F\cdot(F\cdot100 + (F + 100) + 100) + 100) + 100) + 100 = \mbox{Grand Varblethfiefen}\]

\[F\cdot(F\cdot(F\cdot(F\cdot100 + (F\cdot2 + 100) + 100) + 100) + 100) + 100 = \mbox{Great Varblethfiefen}\]

\[F\cdot(F\cdot(F\cdot(F\cdot100 + (F\cdot3 + 100) + 100) + 100) + 100) + 100 = \mbox{Awesome Varblethfiefen}\]


\[F\cdot\hat{F} + 100|6 = \mbox{Varblethsiesu}\]

\[F\cdot\hat{F} + 100|7 = \mbox{Varblethziewer}\]

\[F\cdot\hat{F} + 100|8 = \mbox{Varblethahgdu}\]

\[F\cdot\hat{F} + 100|9 = \mbox{Varblethnienenne}\]

\[F\cdot\hat{F} + 100|10 = \mbox{Varblethzehrdur}\]

And then we get to...

Scydenium Regiment

Scydenium Squadron

Scydenium Series

\[F\uparrow2 + 100 = \mbox{Scydenium}\]

\[F\uparrow2 + (F + 100) + 100 = \mbox{Grand Scydenium}\]

\[F\uparrow2 + (F + (F + 100) + 100) + 100 = \mbox{Second Scydenium}\]

\[F\uparrow2 + (F\cdot 2 + 100) + 100 = \mbox{Great Scydenium}\]

\[F\uparrow2 + (F\cdot 2 + (F + 100) + 100) + 100 = \mbox{Grand Great Scydenium}\]

\[F\uparrow2 + (F\cdot 3 + 100) + 100 = \mbox{Awesome Scydenium}\]

Pulling out the "-duexis" suffix and turning it into its own modifier:

\[F\uparrow2 + (F\cdot 100 + 100) + 100 = \mbox{Duexis Scydenium}\]

\[F\uparrow2 + (F\cdot (F + 100) + 100) + 100 = \mbox{Grand Duexis Scydenium}\]

\[F\uparrow2 + (F\cdot (F\cdot100 + 100) + 100) + 100 = \mbox{Tricis Scydenium}\]

At this point, I'm introducing the "Mega-" meta-modifier, which transforms modifiers to use F^2 instead of F. Nestings of (F + 100) are denoted by "Grand", "Second", "Third", etc., so the next step would be:

\[F\uparrow2 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Scydenium}\]

\[F\uparrow2 + (F\uparrow2 + (F + 100) + 100) + 100 = \mbox{Grand Mega-Grand Scydenium}\]

\[F\uparrow2 + (F\uparrow2 + (F\cdot 2 + 100) + 100) + 100 = \mbox{Great Mega-Grand Scydenium}\]

\[F\uparrow2 + (F\uparrow2 + (F\cdot 100 + 100) + 100) + 100 = \mbox{Mega-Grand Duexis Scydenium}\]

\[F\uparrow2 + (F\uparrow2 + (F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Second Scydenium}\]

\[F\uparrow2 + \hat{F} + 100 | 4 = \mbox{Mega-Third Scydenium}\]


At this point I need to figure out how to tack modifiers to each other. How about:

\[F\uparrow2 + F + 100 = \mbox{Grand-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F + (F + 100) + 100 = \mbox{Grand Great-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F + (F\cdot 100 + 100) + 100 = \mbox{Grand-on-Mega-Grand Duexis Scydenium}\]

\[F\uparrow2 + F + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Great-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F + (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Second Scydenium}\]

\[F\uparrow2 + F\cdot 2 + 100 = \mbox{Great-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot 3 + 100 = \mbox{Awesome-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot 4 + 100 = \mbox{Fantastic-on-Mega-Grand Scydenium}\]


\[F\uparrow2 + F\cdot 100 + 100 = \mbox{Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F + 100) + 100 = \mbox{Grand Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F\cdot2 + 100) + 100 = \mbox{Great Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F\cdot100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Duexis Scydenium}\]

\[F\uparrow2 + F\cdot (F\cdot (F\cdot100 + 100) + 100) + 100 = \mbox{Duexis-on-Mega-Grand Tricis Scydenium}\]

\[F\uparrow2 + F\cdot (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F\uparrow2 + (F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Second Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F\uparrow2 + F\cdot2 + 100) + 100 = \mbox{Great-on-Mega-Grand Duexis-on-Mega-Grand Scydenium}\]

\[F\uparrow2 + F\cdot (F\uparrow2 + F\cdot 100 + 100) + 100 = \mbox{Tricis-on-Mega-Grand Scydenium} \mbox{alternate: Duexis-on-Mega-Second Scydenium}\]

Mega-Great Scydenium Series

\[F\uparrow2\cdot 2 + 100 = \mbox{Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F + 100) + 100 = \mbox{Grand Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F\cdot 100 + 100) + 100 = \mbox{Mega-Great Duexis Scydenium}\]

\[F\uparrow2\cdot 2 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F\uparrow2 + (F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Second Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F\uparrow2 + F\cdot 2 + 100) + 100 = \mbox{Great-on-Mega-Grand Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F\uparrow2 + F\cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + (F\uparrow2\cdot 2 + 100) + 100 = \mbox{Mega-Great Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F + 100 = \mbox{Grand-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot 2 + 100 = \mbox{Great-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot 100 + 100 = \mbox{Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F + 100) + 100 = \mbox{Grand Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2 + F\cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2\cdot 2 + 100) + 100 = \mbox{Mega-Great Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2\cdot 2 + F + 100) + 100 = \mbox{Grand-on-Mega-Great Duexis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2\cdot 2 + F\cdot 100 + 100) + 100 = \mbox{Tricis-on-Mega-Great Scydenium}\]

\[F\uparrow2\cdot 2 + F\cdot (F\uparrow2\cdot 2 + F\cdot (F\uparrow2\cdot 2 + F\cdot 100 + 100) + 100) + 100 = \mbox{Vurlex-on-Mega-Great Scydenium}\]


\[F\uparrow2\cdot 3 + 100 = \mbox{Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + (F + 100) + 100 = \mbox{Grand Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + (F\uparrow2\cdot2 + 100) + 100 = \mbox{Mega-Great Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + (F\uparrow2\cdot3 + 100) + 100 = \mbox{Mega-Awesome Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + F + 100 = \mbox{Grand-on-Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + F\cdot 100 + 100 = \mbox{Duexis-on-Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + F\cdot (F + 100) + 100 = \mbox{Grand Duexis-on-Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + F\cdot (F\uparrow2\cdot 3 + 100) + 100 = \mbox{Mega-Awesome Duexis-on-Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + F\cdot (F\uparrow2\cdot 3 + F + 100) + 100 = \mbox{Grand-on-Mega-Awesome Duexis-on-Mega-Awesome Scydenium}\]

\[F\uparrow2\cdot 3 + F\cdot (F\uparrow2\cdot 3 + F\cdot 100 + 100) + 100 = \mbox{Tricis-on-Mega-Awesome Scydenium}\]


\[F\uparrow2\cdot 4 + 100 = \mbox{Mega-Fantastic Scydenium}\]

\[F\uparrow2\cdot 5 + 100 = \mbox{Mega-Amazing Scydenium}\]

\[F\uparrow2\cdot 6 + 100 = \mbox{Mega-Incredible Scydenium}\]

\[F\uparrow2\cdot 7 + 100 = \mbox{Mega-Glorious Scydenium}\]

\[F\uparrow2\cdot 8 + 100 = \mbox{Mega-Unreal Scydenium}\]

\[F\uparrow2\cdot 9 + 100 = \mbox{Mega-Heavenly Scydenium}\]

\[F\uparrow2\cdot 10 + 100 = \mbox{Mega-Unfathomable Scydenium}\]

Mega-Duexis Scydenium Series

\[F\uparrow2\cdot 100 + 100 = \mbox{Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F + 100) + 100 = \mbox{Grand Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F + (F + 100) + 100) + 100 = \mbox{Second Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\cdot2 + 100) + 100 = \mbox{Great Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\cdot3 + 100) + 100 = \mbox{Awesome Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\cdot100 + 100) + 100 = \mbox{Mega-Duexis Duexis Scydenium}\]

\[F\uparrow2\cdot (F\cdot(F\cdot100 + 100) + 100) + 100 = \mbox{Mega-Duexis Tricis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2 + F\cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot2 + 100) + 100 = \mbox{Mega-Great Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot2 + F\cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Great Mega-Duexis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot3 + 100) + 100 = \mbox{Mega-Awesome Mega-Duexis Scydenium}\]


\[F\uparrow2\cdot (F\uparrow2\cdot100 + 100) + 100 = \mbox{Mega-Tricis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot(F + 100) + 100) + 100 = \mbox{Grand Mega-Tricis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot(F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Grand Mega-Tricis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot(F\uparrow2\cdot2 + 100) + 100) + 100 = \mbox{Mega-Great Mega-Tricis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot(F\uparrow2\cdot3 + 100) + 100) + 100 = \mbox{Mega-Awesome Mega-Tricis Scydenium}\]

\[F\uparrow2\cdot (F\uparrow2\cdot(F\uparrow2\cdot4 + 100) + 100) + 100 = \mbox{Mega-Fantastic Mega-Tricis Scydenium}\]


\[F\uparrow2\cdot \hat{F} + 100|4 = \mbox{Mega-Vurlex Scydenium}\]

\[F\uparrow2\cdot \hat{F} + 100|5 = \mbox{Mega-Fiefen Scydenium}\]

\[F\uparrow2\cdot \hat{F} + 100|6 = \mbox{Mega-Siesu Scydenium}\]

\[F\uparrow2\cdot \hat{F} + 100|7 = \mbox{Mega-Ziewer Scydenium}\]

\[F\uparrow2\cdot \hat{F} + 100|8 = \mbox{Mega-Ahgdu Scydenium}\]

\[F\uparrow2\cdot \hat{F} + 100|9 = \mbox{Mega-Nienenne Scydenium}\]

\[F\uparrow2\cdot \hat{F} + 100|10 = \mbox{Mega-Zehrdur Scydenium}\]

FINALLY we have reached:

Scytronium Squadron

Scytronium Series

\[F\uparrow3 + 100 = \mbox{Scytronium}\]

\[F\uparrow3 + (F + 100) + 100 = \mbox{Grand Scytronium}\]

\[F\uparrow3 + (F + (F + 100) + 100) + 100 = \mbox{Second Scytronium}\]

\[F\uparrow3 + (F\cdot 2 + 100) + 100 = \mbox{Great Scytronium}\]

\[F\uparrow3 + (F\cdot 3 + 100) + 100 = \mbox{Awesome Scytronium}\]

\[F\uparrow3 + (F\cdot 100 + 100) + 100 = \mbox{Duexis Scytronium}\]

\[F\uparrow3 + (F\cdot (F\cdot 100 + 100) + 100) + 100 = \mbox{Tricis Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + (F + 100) + 100) + 100 = \mbox{Grand Mega-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + (F\cdot100 + 100) + 100) + 100 = \mbox{Mega-Grand Duexis Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + (F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Second Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + F\cdot 2 + 100) + 100 = \mbox{Great-on-Mega-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + F\cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow2 + F\cdot (F\uparrow2 + F\cdot 100 + 100) + 100) + 100 = \mbox{Tricis-on-Mega-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 2 + 100) + 100 = \mbox{Mega-Great Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 2 + (F\cdot100 + 100) + 100) + 100 = \mbox{Mega-Great Duexis Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 2 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Mega-Great Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 2 + (F\uparrow2 + F\cdot100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Mega-Great Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 2 + (F\uparrow2 + F\cdot(F\uparrow2 + F\cdot100 + 100) + 100) + 100 = \mbox{Tricis-on-Mega-Grand Mega-Great Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 3 + 100) + 100 = \mbox{Mega-Awesome Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 4 + 100) + 100 = \mbox{Mega-Fantastic Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot 100 + 100) + 100 = \mbox{Mega-Duexis Scytronium}\]

\[F\uparrow3 + (F\uparrow2\cdot (F\uparrow2\cdot 100 + 100) + 100) + 100 = \mbox{Mega-Tricis Scytronium}\]

Now we need a meta-modifier for F^3. The obvious choice is:

\[F\uparrow3 + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow3 + (F + 100) + 100) + 100 = \mbox{Grand Giga-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow3 + (F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Grand Giga-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow3 + (F\uparrow2\cdot2 + 100) + 100) + 100 = \mbox{Mega-Great Giga-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow3 + (F\uparrow2\cdot100 + 100) + 100) + 100 = \mbox{Mega-Duexis Giga-Grand Scytronium}\]

\[F\uparrow3 + (F\uparrow3 + (F\uparrow3 + 100) + 100) + 100) + 100 = \mbox{Giga-Second Scytronium}\]

\[F\uparrow3 + (F\uparrow3 + (F\uparrow3 + (F\uparrow3 + 100) + 100) + 100) + 100) + 100 = \mbox{Giga-Third Scytronium}\]

\[F\uparrow3 + F + 100 = \mbox{Grand-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\cdot 2 + 100 = \mbox{Great-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\cdot 3 + 100 = \mbox{Awesome-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\cdot 100 + 100 = \mbox{Duexis-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\cdot (F\uparrow3 + F\cdot 100 + 100) + 100 = \mbox{Tricis-on-Giga-Grand Scytronium}\]


\[F\uparrow3 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2 + F + 100 = \mbox{Grand-on-Mega-Grand-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2 + F\cdot 100 + 100 = \mbox{Duexis-on-Mega-Grand-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2\cdot 2 + 100 = \mbox{Mega-Great-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2\cdot 3 + 100 = \mbox{Mega-Awesome-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2\cdot 4 + 100 = \mbox{Mega-Fantastic-on-Giga-Grand Scytronium}\]


\[F\uparrow3 + F\uparrow2\cdot 100 + 100 = \mbox{Mega-Duexis-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2\cdot (F\uparrow3 + F\uparrow2\cdot 100 + 100) + 100 = \mbox{Mega-Tricis-on-Giga-Grand Scytronium}\]

\[F\uparrow3 + F\uparrow2\cdot (F\uparrow3 + F\uparrow2\cdot (F\uparrow3 + F\uparrow2\cdot 100 + 100) + 100) + 100 = \mbox{Mega-Vurlex-on-Giga-Grand Scytronium}\]

Giga-Great Scytronium Series

\[F\uparrow3\cdot 2 + 100 = \mbox{Giga-Great Scytronium}\]

\[F\uparrow3\cdot 2 + F + 100 = \mbox{Grand-on-Giga-Great Scytronium}\]

\[F\uparrow3\cdot 2 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Giga-Great Scytronium}\]

\[F\uparrow3\cdot 2 + F\uparrow2 + F + 100 = \mbox{Grand-on-Mega-Grand-on-Giga-Great Scytronium}\]

\[F\uparrow3\cdot 2 + F\uparrow2\cdot 2 + 100 = \mbox{Mega-Great-on-Giga-Great Scytronium}\]

\[F\uparrow3\cdot 2 + F\uparrow2\cdot 100 + 100 = \mbox{Mega-Duexis-on-Giga-Great Scytronium}\]


\[F\uparrow3\cdot 3 + 100 = \mbox{Giga-Awesome Scytronium}\]

\[F\uparrow3\cdot 3 + F + 100 = \mbox{Grand-on-Giga-Awesome Scytronium}\]

\[F\uparrow3\cdot 3 + F\uparrow2 + 100 = \mbox{Mega-Great-on-Giga-Awesome Scytronium}\]

\[F\uparrow3\cdot 3 + F\uparrow2\cdot 100 + 100 = \mbox{Mega-Duexis-on-Giga-Awesome Scytronium}\]


\[F\uparrow3\cdot 4 + 100 = \mbox{Giga-Fantastic Scytronium}\]

\[F\uparrow3\cdot 5 + 100 = \mbox{Giga-Amazing Scytronium}\]

\[F\uparrow3\cdot 6 + 100 = \mbox{Giga-Incredible Scytronium}\]

\[F\uparrow3\cdot 7 + 100 = \mbox{Giga-Glorious Scytronium}\]

Giga-Duexis Scytronium Series

\[F\uparrow3\cdot 100 + 100 = \mbox{Giga-Duexis Scytronium}\]

\[F\uparrow3\cdot (F + 100) + 100 = \mbox{Grand Giga-Duexis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Giga-Duexis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Giga-Duexis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot2 + 100) + 100 = \mbox{Giga-Great Giga-Duexis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot3 + 100) + 100 = \mbox{Giga-Awesome Giga-Duexis Scytronium}\]


\[F\uparrow3\cdot (F\uparrow3\cdot 100 + 100) + 100 = \mbox{Giga-Tricis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot (F + 100) + 100) + 100 = \mbox{Grand Giga-Tricis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow 2 + 100) + 100) + 100 = \mbox{Mega-Grand Giga-Tricis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow 3 + 100) + 100) + 100 = \mbox{Giga-Grand Giga-Tricis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow 3\cdot2 + 100) + 100) + 100 = \mbox{Giga-Great Giga-Tricis Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow 3\cdot3 + 100) + 100) + 100 = \mbox{Giga-Awesome Giga-Tricis Scytronium}\]


\[F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow3\cdot 100 + 100) + 100) + 100) + 100 = \mbox{Giga-Vurlex Scytronium}\]

\[F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow3\cdot (F\uparrow3\cdot 100 + 100) + 100) + 100) + 100) + 100 = \mbox{Giga-Fiefen Scytronium}\]

Scyquatrium Squadron

Scyquatrium Series

\[F\uparrow4 + 100 = \mbox{Scyquatrium}\]

\[F\uparrow4 + (F + 100) + 100 = \mbox{Grand Scyquatrium}\]

\[F\uparrow4 + (F\cdot 2 + 100) + 100 = \mbox{Great Scyquatrium}\]

\[F\uparrow4 + (F\cdot 100 + 100) + 100 = \mbox{Duexis Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2 + (F\uparrow2 + 100) + 100) + 100 = \mbox{Mega-Second Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2 + F\cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2\cdot2 + 100) + 100 = \mbox{Mega-Great Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2\cdot3 + 100) + 100 = \mbox{Mega-Awesome Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2\cdot100 + 100) + 100 = \mbox{Mega-Duexis Scyquatrium}\]

\[F\uparrow4 + (F\uparrow2\cdot(F\uparrow2\cdot100 + 100) + 100) + 100 = \mbox{Mega-Tricis Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3 + F + 100) + 100 = \mbox{Grand-on-Giga-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3 + F\uparrow2 + 100) + 100 = \mbox{Mega-Grand-on-Giga-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3 + F\uparrow2\cdot 100 + 100) + 100 = \mbox{Mega-Duexis-on-Giga-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3\cdot 2 + 100) + 100 = \mbox{Giga-Great Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3\cdot 3 + 100) + 100 = \mbox{Giga-Awesome Scyquatrium}\]

\[F\uparrow4 + (F\uparrow3\cdot 100 + 100) + 100 = \mbox{Giga-Duexis Scyquatrium}\]

\[F\uparrow4 + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Scyquatrium}\]

\[F\uparrow4 + (F\uparrow4 + (F\uparrow4 + 100) + 100) + 100 = \mbox{Tera-Second Scyquatrium}\]

\[F\uparrow4 + F + 100 = \mbox{Grand-on-Tera-Grand Scyquatrium}\]

\[F\uparrow4 + F\cdot 2 + 100 = \mbox{Great-on-Tera-Grand Scyquatrium}\]

\[F\uparrow4 + F\cdot 100 + 100 = \mbox{Duexis-on-Tera-Grand Scyquatrium}\]

\[F\uparrow4 + F\cdot (F\uparrow4 + F\cdot 100 + 100) + 100 = \mbox{Tricis-on-Tera-Grand Scyquatrium}\]


\[F\uparrow4\cdot 2 + 100 = \mbox{Tera-Great Scyquatrium}\]

\[F\uparrow4\cdot 3 + 100 = \mbox{Tera-Awesome Scyquatrium}\]

\[F\uparrow4\cdot 4 + 100 = \mbox{Tera-Fantastic Scyquatrium}\]

\[F\uparrow4\cdot 5 + 100 = \mbox{Tera-Amazing Scyquatrium}\]


\[F\uparrow4\cdot 100 + 100 = \mbox{Tera-Duexis Scyquatrium}\]

\[F\uparrow4\cdot (F\uparrow4\cdot 100 + 100) + 100 = \mbox{Tera-Tricis Scyquatrium}\]

\[F\uparrow4\cdot (F\uparrow4\cdot (F\uparrow4\cdot 100 + 100) + 100) + 100 = \mbox{Tera-Vurlex Scyquatrium}\]

Scycinium Series

\[F\uparrow5 + 100 = \mbox{Scycinium}\]

\[F\uparrow5 + (F + 100) + 100 = \mbox{Grand Scycinium}\]

\[F\uparrow5 + (F\cdot2 + 100) + 100 = \mbox{Great Scycinium}\]

\[F\uparrow5 + (F\cdot100 + 100) + 100 = \mbox{Duexis Scycinium}\]

\[F\uparrow5 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Scycinium}\]

\[F\uparrow5 + (F\uparrow2\cdot 2 + 100) + 100 = \mbox{Mega-Great Scycinium}\]

\[F\uparrow5 + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Scycinium}\]

\[F\uparrow5 + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Scycinium}\]


\[F\uparrow5 + (F\uparrow5 + 100) + 100 = \mbox{Peta-Grand Scycinium}\]

\[F\uparrow5 + F + 100 = \mbox{Grand-on-Peta-Grand Scycinium}\]

\[F\uparrow5 + F\cdot2 + 100 = \mbox{Great-on-Peta-Grand Scycinium}\]

\[F\uparrow5 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Peta-Grand Scycinium}\]

\[F\uparrow5 + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Peta-Grand Scycinium}\]

\[F\uparrow5 + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Peta-Grand Scycinium}\]

\[F\uparrow5 + F\uparrow4\cdot100 + 100 = \mbox{Tera-Duexis-on-Peta-Grand Scycinium}\]

\[F\uparrow5\cdot 2 + 100 = \mbox{Peta-Great Scycinium}\]

\[F\uparrow5\cdot 3 + 100 = \mbox{Peta-Awesome Scycinium}\]


\[F\uparrow5\cdot 100 + 100 = \mbox{Peta-Duexis Scycinium}\]

\[F\uparrow5\cdot (F\uparrow5\cdot 100 + 100) + 100 = \mbox{Peta-Tricis Scycinium}\]

Scysixium Series

\[F\uparrow6 + 100 = \mbox{Scysixium}\]

\[F\uparrow6 + (F + 100) + 100 = \mbox{Grand Scysixium}\]

\[F\uparrow6 + (F\uparrow6 + 100) + 100 = \mbox{Exa-Grand Scysixium}\]

\[F\uparrow6 + F + 100 = \mbox{Grand-on-Exa-Grand Scysixium}\]

\[F\uparrow6\cdot 2 + 100 = \mbox{Exa-Great Scysixium}\]

\[F\uparrow6\cdot 100 + 100 = \mbox{Exa-Duexis Scysixium}\]


\[F\uparrow7 + 100 = \mbox{Scyseptium}\]

\[F\uparrow7 + (F\uparrow7 + 100) + 100 = \mbox{Zetta-Grand Scyseptium}\]

\[F\uparrow7\cdot2 + 100 = \mbox{Zetta-Great Scyseptium}\]

\[F\uparrow7\cdot100 + 100 = \mbox{Zetta-Duexis Scyseptium}\]


\[F\uparrow8 + 100 = \mbox{Scyhuitium}\]

\[F\uparrow9 + 100 = \mbox{Scyneunium}\]

\[F\uparrow10 + 100 = \mbox{Scydixium}\]

\[F\uparrow11 + 100 = \mbox{Scyonzium}\]

Scyniugon Regiment

Scyniugon Squadron

Scyniugon Superseries

\[F\uparrow 100 + 100 = \mbox{Scyniugon}\]

\[F\uparrow (F + 100) + 100 = \mbox{Grand Scyniugon}\]

\[F\uparrow (F + (F + 100) + 100) + 100 = \mbox{Second Scyniugon}\]

\[F\uparrow (F + \hat{F} + 100) + 100|3 = \mbox{Third Scyniugon}\]

\[F\uparrow (F + \hat{F} + 100) + 100|4 = \mbox{Fourth Scyniugon}\]

\[F\uparrow (F + \hat{F} + 100) + 100|5 = \mbox{Fifth Scyniugon}\]

\[F\uparrow (F + \hat{F} + 100) + 100|6 = \mbox{Sixth Scyniugon}\]


\[F\uparrow (F \cdot 2 + 100) + 100 = \mbox{Great Scyniugon}\]

\[F\uparrow (F \cdot 3 + 100) + 100 = \mbox{Awesome Scyniugon}\]

\[F\uparrow (F \cdot 4 + 100) + 100 = \mbox{Fantastic Scyniugon}\]

\[F\uparrow (F \cdot 5 + 100) + 100 = \mbox{Amazing Scyniugon}\]


\[F\uparrow (F \cdot 100 + 100) + 100 = \mbox{Duexis Scyniugon}\]

\[F\uparrow (F \cdot (F \cdot 100 + 100) + 100) + 100 = \mbox{Tricis Scyniugon}\]

\[F\uparrow (F \cdot (F \cdot (F \cdot 100 + 100) + 100) + 100) + 100 = \mbox{Vurlex Scyniugon}\]

Mega-Grand Scyniugon Series

\[F\uparrow (F \uparrow 2 + 100) + 100 = \mbox{Mega-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 2 + (F + 100) + 100) + 100 = \mbox{Grand Mega-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 2 + (F \cdot 2 + 100) + 100) + 100 = \mbox{Great Mega-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 2 + (F \uparrow 2 + 100) + 100) + 100 = \mbox{Mega-Second Scyniugon}\]

\[F\uparrow (F \uparrow 2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 2 + F \cdot 2 + 100) + 100 = \mbox{Great-on-Mega-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 2 + F \cdot 100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 2 \cdot 2 + 100) + 100 = \mbox{Mega-Great Scyniugon}\]

\[F\uparrow (F \uparrow 2 \cdot 100 + 100) + 100 = \mbox{Mega-Duexis Scyniugon}\]


\[F\uparrow (F \uparrow 3 + 100) + 100 = \mbox{Giga-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 3\cdot2 + 100) + 100 = \mbox{Giga-Great Scyniugon}\]

\[F\uparrow (F \uparrow 3\cdot3 + 100) + 100 = \mbox{Giga-Awesome Scyniugon}\]


\[F\uparrow (F \uparrow 4 + 100) + 100 = \mbox{Tera-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 5 + 100) + 100 = \mbox{Peta-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 6 + 100) + 100 = \mbox{Exa-Grand Scyniugon}\]

\[F\uparrow (F \uparrow 7 + 100) + 100 = \mbox{Zetta-Grand Scyniugon}\]

Scyniuhedron Squadron

Scyniuhedron Superseries

\[F\uparrow (F \uparrow 100 + 100) + 100 = \mbox{Scyniuhedron}\]

\[F\uparrow (F \uparrow (F + 100) + 100) + 100 = \mbox{Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F + (F + 100) + 100) + 100) + 100 = \mbox{Second Scyniuhedron}\]

\[F\uparrow (F \uparrow (F + (F + 100) + 100) + 100) + 100 = \mbox{Third Scyniuhedron}\]

\[F\uparrow (F \uparrow (F + (F + 100) + 100) + 100) + 100 = \mbox{Fourth Scyniuhedron}\]


\[F\uparrow (F \uparrow (F\cdot 2 + 100) + 100) + 100 = \mbox{Great Scyniuhedron}\]

\[F\uparrow (F \uparrow (F\cdot 3 + 100) + 100) + 100 = \mbox{Awesome Scyniuhedron}\]

\[F\uparrow (F \uparrow (F\cdot 4 + 100) + 100) + 100 = \mbox{Fantastic Scyniuhedron}\]


\[F\uparrow (F \uparrow (F \cdot 100 + 100) + 100) + 100 = \mbox{Duexis Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \cdot (F \cdot 100 + 100) + 100) + 100) + 100 = \mbox{Tricis Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \cdot (F \cdot (F \cdot 100 + 100) + 100) + 100) + 100) + 100 = \mbox{Vurlex Scyniuhedron}\]

Mega-Grand Scyniuhedron Series

\[F\uparrow (F \uparrow (F \uparrow 2 + 100) + 100) + 100 = \mbox{Mega-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 2 + (F \uparrow 2 + 100) + 100) + 100) + 100 = \mbox{Mega-Second Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 2 + F + 100) + 100) + 100 = \mbox{Grand-on-Mega-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 2 \cdot 2 + 100) + 100) + 100 = \mbox{Mega-Great Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 2 \cdot 3 + 100) + 100) + 100 = \mbox{Mega-Awesome Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 2 \cdot 100 + 100) + 100) + 100 = \mbox{Mega-Duexis Scyniuhedron}\]


\[F\uparrow (F \uparrow (F \uparrow 3 + 100) + 100) + 100 = \mbox{Giga-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 3 + (F \uparrow 3 + 100) + 100) + 100) + 100 = \mbox{Giga-Second Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 3 + F + 100) + 100) + 100) + 100 = \mbox{Grand-on-Giga-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 3 + F\uparrow 2 + 100) + 100) + 100) + 100 = \mbox{Mega-Grand-on-Giga-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 3 \cdot2 + 100) + 100) + 100) + 100 = \mbox{Giga-Great Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 3 \cdot3 + 100) + 100) + 100) + 100 = \mbox{Giga-Awesome Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 3 \cdot100 + 100) + 100) + 100 = \mbox{Giga-Duexis Scyniuhedron}\]


\[F\uparrow (F \uparrow (F \uparrow 4 + 100) + 100) + 100 = \mbox{Tera-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 5 + 100) + 100) + 100 = \mbox{Peta-Grand Scyniuhedron}\]

\[F\uparrow (F \uparrow (F \uparrow 6 + 100) + 100) + 100 = \mbox{Exa-Grand Scyniuhedron}\]

Scyniuchoron Squadron

Scyniuchoron Series

\[F\uparrow (F \uparrow (F \uparrow 100 + 100) + 100) + 100 = \mbox{Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F + 100) + 100) + 100 = \mbox{Grand Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F + (F + 100) + 100) + 100) + 100 = \mbox{Second Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F + (F + (F + 100) + 100) + 100) + 100) + 100 = \mbox{Third Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \cdot2 + 100) + 100) + 100 = \mbox{Great Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \cdot3 + 100) + 100) + 100 = \mbox{Awesome Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F\cdot100 + 100) + 100) + 100 = \mbox{Duexis Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F\cdot(F\cdot100 + 100) + 100) + 100) + 100 = \mbox{Tricis Scyniuchoron}\]


\[F\uparrow (F \uparrow (F \uparrow (F \uparrow 2 + 100) + 100) + 100) + 100 = \mbox{Mega-Grand Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow 3 + 100) + 100) + 100) + 100 = \mbox{Giga-Grand Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow 4 + 100) + 100) + 100) + 100 = \mbox{Tera-Grand Scyniuchoron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow 5 + 100) + 100) + 100) + 100 = \mbox{Peta-Grand Scyniuchoron}\]

Scyniuteron Series

\[F\uparrow \hat{F} + 100 | 5 = \mbox{Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F + 100) + 100) + 100) + 100) + 100 = \mbox{Grand Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F + (F + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Second Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \cdot2 + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Great Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \cdot100 + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Duexis Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \cdot(F \cdot100 + 100) + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Tricis Scyniuteron}\]


\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow 2 + 100) + 100) + 100) + 100) + 100 = \mbox{Mega-Grand Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow 3 + 100) + 100) + 100) + 100) + 100 = \mbox{Giga-Grand Scyniuteron}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow 4 + 100) + 100) + 100) + 100) + 100 = \mbox{Tera-Grand Scyniuteron}\]

Scyniupeton Series

\[F\uparrow \hat{F} + 100 | 6 = \mbox{Scyniupeton}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Grand Scyniupeton}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F\uparrow2 + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Mega-Grand Scyniupeton}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F\uparrow3 + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Giga-Grand Scyniupeton}\]


\[F\uparrow \hat{F} + 100 | 7 = \mbox{Scyniuexon}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F + 100) + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Grand Scyniuexon}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F\uparrow2 + 100) + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Mega-Grand Scyniuexon}\]

\[F\uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F \uparrow (F\uparrow3 + 100) + 100) + 100) + 100) + 100) + 100) + 100 = \mbox{Giga-Grand Scyniuexon}\]


\[F\uparrow \hat{F} + 100 | 8 = \mbox{Scyniuzetton}\]

\[F\uparrow \hat{F} + 100 | 9 = \mbox{Scyniuyotton}\]

Until now, I've been going off the n-polytope names given by the All Dimensions Wiki. However, I don't like their naming scheme after this, so I'll use the Blowers SI extension instead:

\[F\uparrow \hat{F} + 100 | 10 = \mbox{Scyniuxonon}\]

\[F\uparrow \hat{F} + 100 | 11 = \mbox{Scyniuwekon}\]

Until we get to a totally new number...

Forceheliasinn Regiment

Forceheliasinn Squadron

Forceheliasinn Series

\[F\uparrow F + 100 = \mbox{Forceheliasinn}\]

\[F\uparrow F + (F + 100) + 100 = \mbox{Grand Forceheliasinn}\]

\[F\uparrow F + (F + (F + 100) + 100) + 100 = \mbox{Second Forceheliasinn}\]

\[F\uparrow F + (F\cdot2 + 100) + 100 = \mbox{Great Forceheliasinn}\]

\[F\uparrow F + (F\cdot3 + 100) + 100 = \mbox{Awesome Forceheliasinn}\]

\[F\uparrow F + (F\cdot100 + 100) + 100 = \mbox{Duexis Forceheliasinn}\]

\[F\uparrow F + (F\cdot(F\cdot100 + 100) + 100) + 100 = \mbox{Tricis Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2 + F + 100) + 100 = \mbox{Grand-on-Mega-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2 + F\cdot2 + 100) + 100 = \mbox{Great-on-Mega-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2 + F\cdot100 + 100) + 100 = \mbox{Duexis-on-Mega-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2\cdot2 + 100) + 100 = \mbox{Mega-Great Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2\cdot3 + 100) + 100 = \mbox{Mega-Awesome Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2\cdot100 + 100) + 100 = \mbox{Mega-Duexis Forceheliasinn}\]

\[F\uparrow F + (F\uparrow2\cdot(F\uparrow2\cdot100 + 100) + 100) + 100 = \mbox{Mega-Tricis Forceheliasinn}\]

\[F\uparrow F + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow5 + 100) + 100 = \mbox{Peta-Grand Forceheliasinn}\]

\[F\uparrow F + (F\uparrow6 + 100) + 100 = \mbox{Exa-Grand Forceheliasinn}\]

At this point I've run out of tricks -- No matter, I'll just invent modifiers based on the polytope suffixes from earlier.

\[F\uparrow F + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Forceheliasinn}\]

\[F\uparrow F + (F\uparrow(F\uparrow100 + 100) + 100) + 100 = \mbox{Polyhedral Forceheliasinn}\]

\[F\uparrow F + (F\uparrow(F\uparrow(F\uparrow100 + 100) + 100) + 100) + 100 = \mbox{Polychoral Forceheliasinn}\]

\[F\uparrow F + (F\uparrow(F\uparrow(F\uparrow(F\uparrow100 + 100) + 100) + 100) + 100) + 100 = \mbox{Polyteral Forceheliasinn}\]

Which brings us to the powerful Crazy- meta-modifier, which elevates modifiers to F ^ (original meaning). I found the final "Grand" gets a bit redundant after a while, so I've dropped it.

\[F\uparrow F + (F\uparrowF + 100) + 100 = \mbox{Crazy Forceheliasinn}\]

\[F\uparrow F + (F\uparrowF + (F\uparrowF + 100) + 100) + 100 = \mbox{Crazy-Second Forceheliasinn}\]

\[F\uparrow F + (F\uparrowF + (F\uparrowF + (F\uparrowF + 100) + 100) + 100) + 100 = \mbox{Crazy-Third Forceheliasinn}\]

\[F\uparrow F + F + 100 = \mbox{Grand-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F + (F\uparrow F + F + 100) + 100 = \mbox{Second-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\cdot2 + 100 = \mbox{Great-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\cdot3 + 100 = \mbox{Awesome-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\cdot4 + 100 = \mbox{Fantastic-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\cdot100 + 100 = \mbox{Duexis-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\cdot(F\uparrow F + F\cdot100 + 100) + 100 = \mbox{Tricis-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow2 + F + 100 = \mbox{Grand-on-Mega-Grand-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow2\cdot2 + 100 = \mbox{Mega-Great-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow2\cdot100 + 100 = \mbox{Mega-Duexis-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow100 + 100 = \mbox{Polygonal-on-Crazy Forceheliasinn}\]

\[F\uparrow F + F\uparrow(F\uparrow F + F\uparrow100 + 100) + 100 = \mbox{Polyhedral-on-Crazy Forceheliasinn}\]

At this point I need to introduce the -exta- infix, which multiplies modifiers' structures, like -on- adds them. Of course, I don't have any modifiers small enough to use here, so I'll have to multiply by numbers instead.

\[F\uparrow F\cdot2 + 100 = \mbox{2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F + 100) + 100 = \mbox{Grand 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F + (F + 100) + 100) + 100 = \mbox{Second 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\cdot2 + 100) + 100 = \mbox{Great 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\cdot3 + 100) + 100 = \mbox{Awesome 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\cdot100 + 100) + 100 = \mbox{Duexis 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrow2\cdot2 + 100) + 100 = \mbox{Mega-Great 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrow100 + 100) + 100 = \mbox{Polygonal 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrow(F\uparrow100 + 100) + 100) + 100 = \mbox{Polyhedral 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrowF + 100) + 100 = \mbox{Crazy 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrowF\cdot2 + 100) + 100 = \mbox{2-exta-Crazy 2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + (F\uparrowF\cdot2 + (F\uparrowF\cdot2 + 100) + 100) + 100 = \mbox{Three-ex-2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + F + 100 = \mbox{Grand-on-2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + F\cdot2 + 100 = \mbox{Great-on-2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + F\cdot3 + 100 = \mbox{Awesome-on-2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + F\cdot100 + 100 = \mbox{Duexis-on-2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot2 + F\cdotF + 100 = \mbox{Crazy-on-2-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot3 + 100 = \mbox{3-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot4 + 100 = \mbox{4-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot5 + 100 = \mbox{5-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot6 + 100 = \mbox{6-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot7 + 100 = \mbox{7-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot8 + 100 = \mbox{8-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot9 + 100 = \mbox{9-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot10 + 100 = \mbox{10-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot100 + 100 = \mbox{100-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot(F\uparrow F\cdot100 + 100) + 100 = \mbox{100-exta-Crazy-exta-Crazy Forceheliasinn}\]

\[F\uparrow F\cdot(F\uparrow F\cdot(F\uparrow F\cdot100 + 100) + 100) + 100 = \mbox{100-exta-Crazy-exta-Crazy-exta-Crazy Forceheliasinn}\]

This is getting a bit unweildy. Fortunately, it soon gets a lot easier:

\[F\uparrow[F + 1] + 100 = \mbox{Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F + 100) + 100 = \mbox{Grand Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F\uparrowF + 100) + 100 = \mbox{Crazy Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F\uparrowF\cdot2 + 100) + 100 = \mbox{2-exta-Crazy Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F\uparrowF\cdot100 + 100) + 100 = \mbox{100-exta-Crazy Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F\uparrow[F + 1] + 100) + 100 = \mbox{Grand-exta-Crazy Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + (F\uparrow[F + 1] + (F\uparrow[F + 1] + 100) + 100) + 100 = \mbox{Three-ex-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F + 100 = \mbox{Grand-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F\uparrow100 + 100 = \mbox{Polygonal-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F\uparrowF + 100 = \mbox{Crazy-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F\uparrowF\cdot2 + 100 = \mbox{2-exta-Crazy-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] + F\uparrowF\cdot100 + 100 = \mbox{100-exta-Crazy-on-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] \cdot2 + 100 = \mbox{Great-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] \cdot3 + 100 = \mbox{Awesome-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] \cdot4 + 100 = \mbox{Fantastic-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] \cdot100 + 100 = \mbox{Duexis-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] \cdot(F\uparrow[F + 1] \cdot100 + 100) + 100 = \mbox{Tricis-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 1] \cdot(F\uparrow[F + 1] \cdot(F\uparrow[F + 1] \cdot100 + 100) + 100) + 100 = \mbox{Vurlex-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + 100 = \mbox{Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F + 100 = \mbox{Grand-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\cdot2 + 100 = \mbox{Great-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\cdot100 + 100 = \mbox{Duexis-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow100 + 100 = \mbox{Polygonal-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow(F\uparrow[F + 2] + F\uparrow100 + 100) + 100 = \mbox{Polyhedral-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow F + 100 = \mbox{Crazy-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow F\cdot2 + 100 = \mbox{2-exta-Crazy-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] + F\uparrow F\cdot100 + 100 = \mbox{100-exta-Crazy-on-Mega-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] \cdot2 + 100 = \mbox{Mega-Great-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] \cdot3 + 100 = \mbox{Mega-Awesome-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] \cdot4 + 100 = \mbox{Mega-Fantastic-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] \cdot100 + 100 = \mbox{Mega-Duexis-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 2] \cdot(F\uparrow[F + 2] \cdot100 + 100) + 100 = \mbox{Mega-Tricis-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 3] + 100 = \mbox{Giga-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 4] + 100 = \mbox{Tera-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 5] + 100 = \mbox{Peta-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 6] + 100 = \mbox{Exa-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 7] + 100 = \mbox{Zetta-Grand-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + 100] + 100 = \mbox{Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F + 100)] + 100 = \mbox{Grand Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F + (F + 100) + 100)] + 100 = \mbox{Second Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\cdot2 + 100)] + 100 = \mbox{Great Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\cdot100 + 100)] + 100 = \mbox{Duexis Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow2 + 100)] + 100 = \mbox{Mega-Grand Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow100 + 100)] + 100 = \mbox{Polygonal Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow F + 100)] + 100 = \mbox{Crazy Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow F \cdot2 + 100)] + 100 = \mbox{2-exta-Crazy Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow F \cdot100 + 100)] + 100 = \mbox{100-exta-Crazy Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + 1] + 100)] + 100 = \mbox{Grand-exta-Crazy Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + 2] + 100)] + 100 = \mbox{Mega-Grand-exta-Crazy Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + 3] + 100)] + 100 = \mbox{Giga-Grand-exta-Crazy Polygonal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + 100] + 100)] + 100 = \mbox{Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F + 100)] + 100)] + 100 = \mbox{Grand Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \cdot2 + 100)] + 100)] + 100 = \mbox{Great Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow2 + 100)] + 100)] + 100 = \mbox{Mega-Grand Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow F + 100)] + 100)] + 100 = \mbox{Crazy Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow [F + 1] + 100)] + 100)] + 100 = \mbox{Grand-exta-Crazy Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow [F + 2] + 100)] + 100)] + 100 = \mbox{Mega-Grand-exta-Crazy Polyhedral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow [F + 100] + 100)] + 100)] + 100 = \mbox{Polychoral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow [F + 100] + 100)] + 100)] + 100 = \mbox{Polyteral-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow [F + 100] + 100)] + 100)] + 100 = \mbox{Polypetal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F + (F\uparrow [F + (F \uparrow [F + 100] + 100)] + 100)] + 100 = \mbox{Polyexal-exta-Crazy Forceheliasinn}\]

\[F\uparrow[F\cdot2] + 100 = \mbox{Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F + 100) + 100 = \mbox{Grand Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F + (F + 100) + 100) + 100 = \mbox{Second Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\cdot2 + 100) + 100 = \mbox{Great Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\cdot3 + 100) + 100 = \mbox{Awesome Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\cdot100 + 100) + 100 = \mbox{Duexis Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\cdot(F\cdot100 + 100) + 100) + 100 = \mbox{Tricis Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow F + 100) + 100 = \mbox{Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow F\cdot2 + 100) + 100 = \mbox{2-exta-Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow F\cdot3 + 100) + 100 = \mbox{Crazy-Awesome Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow F\cdot100 + 100) + 100 = \mbox{100-exta-Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow [F + 1] + 100) + 100 = \mbox{Grand-exta-Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow [F + 2] + 100) + 100 = \mbox{Mega-Grand-exta-Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow [F + 3] + 100) + 100 = \mbox{Giga-Grand-exta-Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow [F + 100] + 100) + 100 = \mbox{Polygonal-exta-Crazy Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow [F\cdot2] + 100) + 100 = \mbox{Crazy-Great Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + (F\uparrow [F\cdot2] + (F\uparrow [F\cdot2] + 100) + 100) + 100 = \mbox{Three-ex-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F + 100 = \mbox{Grand-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\cdot2 + 100 = \mbox{Great-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\cdot100 + 100 = \mbox{Duexis-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow100 + 100 = \mbox{Polygonal-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow F + 100 = \mbox{Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow F\cdot2 + 100 = \mbox{2-exta-Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow F\cdot100 + 100 = \mbox{100-exta-Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow [F + 1] + 100 = \mbox{Grand-exta-Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow [F + 2] + 100 = \mbox{Mega-Grand-exta-Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow [F + 3] + 100 = \mbox{Giga-Grand-exta-Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2] + F\uparrow [F + 100] + 100 = \mbox{Polygonal-exta-Crazy-on-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2]\cdot2 + 100 = \mbox{2-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2]\cdot3 + 100 = \mbox{3-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2]\cdot100 + 100 = \mbox{100-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 1] + 100 = \mbox{Grand-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 1]\cdot2 + 100 = \mbox{Great-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 1]\cdot3 + 100 = \mbox{Awesome-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 1]\cdot100 + 100 = \mbox{Duexis-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 2] + 100 = \mbox{Mega-Grand-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 3] + 100 = \mbox{Giga-Grand-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 4] + 100 = \mbox{Tera-Grand-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 5] + 100 = \mbox{Peta-Grand-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 6] + 100 = \mbox{Exa-Grand-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + 100] + 100 = \mbox{Polygonal-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + (F\uparrow[F\cdot2 + 100] + 100)] + 100 = \mbox{Polyhedral-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot2 + (F\uparrow[F\cdot2 + (F\uparrow[F\cdot2 + 100] + 100)] + 100)] + 100 = \mbox{Polychoral-exta-Crazy-Great Forceheliasinn}\]

\[F\uparrow[F\cdot3] + 100 = \mbox{Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + (F + 100) + 100 = \mbox{Grand Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + (F\uparrow F + 100) + 100 = \mbox{Crazy Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + (F\uparrow [F\cdot2] + 100) + 100 = \mbox{Crazy-Great Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + (F\uparrow [F\cdot3] + 100) + 100 = \mbox{Crazy-Awesome Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + (F\uparrow [F\cdot3] + (F\uparrow [F\cdot3] + 100) + 100) + 100 = \mbox{Three-ex-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + F + 100 = \mbox{Grand-on-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + F\uparrow F + 100 = \mbox{Crazy-on-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] + F\uparrow [F\cdot2] + 100 = \mbox{Crazy-Great-on-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] \cdot2 + 100 = \mbox{2-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3] \cdot 100 + 100 = \mbox{3-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3 + 1] + 100 = \mbox{Grand-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3 + 2] + 100 = \mbox{Mega-Grand-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3 + 3] + 100 = \mbox{Giga-Grand-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3 + 100] + 100 = \mbox{Polygonal-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot3 + (F\uparrow[F\cdot3 + 100] + 100)] + 100 = \mbox{Polyhedral-exta-Crazy-Awesome Forceheliasinn}\]

\[F\uparrow[F\cdot4] + 100 = \mbox{Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] + (F + 100) + 100 = \mbox{Grand Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] + (F\uparrow F + 100) + 100 = \mbox{Crazy Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] + (F\uparrow [F\cdot4] + 100) + 100 = \mbox{Crazy-Fantastic Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] + F + 100 = \mbox{Grand-on-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] + F\uparrow F + 100 = \mbox{Crazy-on-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] \cdot2 + 100 = \mbox{2-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4] \cdot100 + 100 = \mbox{100-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4 + 1] + 100 = \mbox{Grand-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4 + 2] + 100 = \mbox{Mega-Grand-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4 + 3] + 100 = \mbox{Giga-Grand-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4 + 100] + 100 = \mbox{Polygonal-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot4 + (F\uparrow[F\cdot4 + 100] + 100)] + 100 = \mbox{Polyhedral-exta-Crazy-Fantastic Forceheliasinn}\]

\[F\uparrow[F\cdot5] + 100 = \mbox{Crazy-Amazing Forceheliasinn}\]

\[F\uparrow[F\cdot6] + 100 = \mbox{Crazy-Incredible Forceheliasinn}\]

\[F\uparrow[F\cdot7] + 100 = \mbox{Crazy-Glorious Forceheliasinn}\]

\[F\uparrow[F\cdot100] + 100 = \mbox{Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F + 100) + 100)] + 100 = \mbox{Grand Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F + (F + 100) + 100) + 100)] + 100 = \mbox{Second Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\cdot2 + 100) + 100)] + 100 = \mbox{Great Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\cdot100 + 100) + 100)] + 100 = \mbox{Duexis Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow2 + 100) + 100)] + 100 = \mbox{Mega-Grand Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow100 + 100) + 100)] + 100 = \mbox{Polygonal Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow F + 100) + 100)] + 100 = \mbox{Crazy Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F + 1] + 100) + 100)] + 100 = \mbox{Grand-exta-Crazy Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F + 100] + 100) + 100)] + 100 = \mbox{Polygonal-exta-Crazy Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot2] + 100) + 100)] + 100 = \mbox{Crazy-Great Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot3] + 100) + 100)] + 100 = \mbox{Crazy-Awesome Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot4] + 100) + 100)] + 100 = \mbox{Crazy-Fantastic Crazy-Duexis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot100] + 100) + 100)] + 100 = \mbox{Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F + 100)] + 100) + 100)] + 100 = \mbox{Grand Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F + (F + 100) + 100)] + 100) + 100)] + 100 = \mbox{Second Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\cdot2 + 100)] + 100) + 100)] + 100 = \mbox{Great Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\cdot100 + 100)] + 100) + 100)] + 100 = \mbox{Duexis Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow2 + 100)] + 100) + 100)] + 100 = \mbox{Mega-Grand Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow100 + 100)] + 100) + 100)] + 100 = \mbox{Polygonal Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow F + 100)] + 100) + 100)] + 100 = \mbox{Crazy Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F + 1] + 100)] + 100) + 100)] + 100 = \mbox{Grand-exta-Crazy Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F + 100] + 100)] + 100) + 100)] + 100 = \mbox{Polygonal-exta-Crazy Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot2] + 100)] + 100) + 100)] + 100 = \mbox{Crazy-Great Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot3] + 100)] + 100) + 100)] + 100 = \mbox{Crazy-Awesome Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot4] + 100)] + 100) + 100)] + 100 = \mbox{Crazy-Fantastic Crazy-Tricis Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot100] + 100)] + 100) + 100)] + 100 = \mbox{Crazy-Vurlex Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot100] + 100)] + 100)] + 100) + 100)] + 100 = \mbox{Crazy-Fiefen Forceheliasinn}\]

\[F\uparrow[F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot(F\uparrow [F\cdot100] + 100)] + 100)] + 100)] + 100) + 100)] + 100 = \mbox{Crazy-Siesu Forceheliasinn}\]

Crazy-Mega-Grand Forceheliasinn Series

Whoa, all that stuff was ONE series??? I'm going to have to abridge this a bit or else I'll be here all year.

\[F\uparrow F \uparrow 2 + 100 = \mbox{Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F + 100) + 100 = \mbox{Grand Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F + (F + 100) + 100) + 100 = \mbox{Second Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\cdot2 + 100) + 100 = \mbox{Great Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\cdot100 + 100) + 100 = \mbox{Duexis Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow F + 100) + 100 = \mbox{Crazy Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow [F + 1] + 100) + 100 = \mbox{Grand-exta-Crazy Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow [F\cdot2] + 100) + 100 = \mbox{Crazy-Great Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow [F\cdot100] + 100) + 100 = \mbox{Crazy-Duexis Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow F\uparrow2 + 100) + 100 = \mbox{Crazy-Mega-Grand Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + (F\uparrow F\uparrow2 + (F\uparrow F\uparrow2 + 100) + 100) + 100 = \mbox{Three-ex-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F + 100 = \mbox{Grand-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\cdot2 + 100 = \mbox{Great-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\cdot100 + 100 = \mbox{Duexis-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\uparrow100 + 100 = \mbox{Polygonal-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\uparrow F + 100 = \mbox{Crazy-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\uparrow [F\cdot2] + 100 = \mbox{Crazy-Great-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\uparrow [F\cdot3] + 100 = \mbox{Crazy-Awesome-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2 + F\uparrow [F\cdot100] + 100 = \mbox{Crazy-Duexis-on-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2\cdot2 + 100 = \mbox{2-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2\cdot3 + 100 = \mbox{3-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 2\cdot100 + 100 = \mbox{100-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + 1] + 100 = \mbox{Grand-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + 1]\cdot2 + 100 = \mbox{Great-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + 2] + 100 = \mbox{Mega-Grand-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + 3] + 100 = \mbox{Giga-Grand-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + 100] + 100 = \mbox{Polygonal-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + F] + 100 = \mbox{Crazy-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + F + 1] + 100 = \mbox{Grand-exta-Crazy-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + F\cdot2] + 100 = \mbox{Crazy-Great-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + F\cdot3] + 100 = \mbox{Crazy-Awesome-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + F\cdot4] + 100 = \mbox{Crazy-Fantastic-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2 + F\cdot100] + 100 = \mbox{Crazy-Duexis-exta-Crazy-Mega-Grand Forceheliasinn}\]

\[F\uparrow [F \uparrow 2\cdot2] + 100 = \mbox{Crazy-Mega-Great Forceheliasinn}\]

\[F\uparrow [F \uparrow 2\cdot3] + 100 = \mbox{Crazy-Mega-Awesome Forceheliasinn}\]

\[F\uparrow [F \uparrow 2\cdot100] + 100 = \mbox{Crazy-Mega-Duexis Forceheliasinn}\]

\[F\uparrow [F \uparrow 2\cdot(F\uparrow [F \uparrow 2\cdot100] + 100)] + 100 = \mbox{Crazy-Mega-Tricis Forceheliasinn}\]

\[F\uparrow F \uparrow 3 + 100 = \mbox{Crazy-Giga-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 4 + 100 = \mbox{Crazy-Tera-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 5 + 100 = \mbox{Crazy-Peta-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 6 + 100 = \mbox{Crazy-Exa-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 7 + 100 = \mbox{Crazy-Zetta-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 8 + 100 = \mbox{Crazy-Yotta-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 9 + 100 = \mbox{Crazy-Xona-Grand Forceheliasinn}\]

\[F\uparrow F \uparrow 10 + 100 = \mbox{Crazy-Weka-Grand Forceheliasinn}\]

Crazy-Polygonal Forceheliasinn Series

\[F\uparrow F \uparrow 100 + 100 = \mbox{Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F + 100)] + 100 = \mbox{Grand Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow F + 100)] + 100 = \mbox{Crazy-Grand Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F + 1] + 100)] + 100 = \mbox{Grand-exta-Crazy-Grand Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F + 100] + 100)] + 100 = \mbox{Polygonal-exta-Crazy-Grand Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\cdot2] + 100)] + 100 = \mbox{Crazy-Great Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\cdot100] + 100)] + 100 = \mbox{Crazy-Duexis Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\uparrow2] + 100)] + 100 = \mbox{Crazy-Mega-Grand Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\uparrow3] + 100)] + 100 = \mbox{Crazy-Giga-Grand Crazy-Polygonal Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\uparrow100] + 100)] + 100 = \mbox{Crazy-Polyhedral Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\uparrow(F\uparrow [F\uparrow100] + 100)] + 100)] + 100 = \mbox{Crazy-Polychoral Forceheliasinn}\]

\[F\uparrow [F \uparrow (F\uparrow [F\uparrow(F\uparrow [F\uparrow(F\uparrow [F\uparrow100] + 100)] + 100)] + 100)] + 100 = \mbox{Crazy-Polyteral Forceheliasinn}\]

Forcelithiasinn Squadron

Forcelithiasinn Series

\[F\uparrow F \uparrow F + 100 = \mbox{Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F + 100) + 100 = \mbox{Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F + (F + 100) + 100) + 100 = \mbox{Second Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F + (F + (F + 100) + 100) + 100) + 100 = \mbox{Third Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\cdot2 + 100) + 100 = \mbox{Great Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\cdot3 + 100) + 100 = \mbox{Awesome Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\cdot4 + 100) + 100 = \mbox{Fantastic Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\cdot100 + 100) + 100 = \mbox{Duexis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\cdot(F\cdot100 + 100) + 100) + 100 = \mbox{Tricis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\cdot(F\cdot(F\cdot100 + 100) + 100) + 100) + 100 = \mbox{Vurlex Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow(F\uparrow100 + 100) + 100) + 100 = \mbox{Polyhedral Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow(F\uparrow(F\uparrow100 + 100) + 100) + 100) + 100 = \mbox{Polychoral Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F + 100) + 100 = \mbox{Crazy Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow 2 + 100) + 100 = \mbox{Crazy-Mega-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow 3 + 100) + 100 = \mbox{Crazy-Giga-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow 100 + 100) + 100 = \mbox{Crazy-Polygonal Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow (F\uparrow F \uparrow 100 + 100) + 100) + 100 = \mbox{Crazy-Polyhedral Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow (F\uparrow F \uparrow (F\uparrow F \uparrow 100 + 100) + 100) + 100) + 100 = \mbox{Crazy-Polychoral Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow F + 100) + 100 = \mbox{Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow F + (F\uparrow F \uparrow F + 100) + 100) + 100 = \mbox{Heliaxi-Second Forcelithiasinn}\]

\[F\uparrow F \uparrow F + (F\uparrow F \uparrow F + (F\uparrow F \uparrow F + (F\uparrow F \uparrow F + 100) + 100) + 100) + 100 = \mbox{Heliaxi-Third Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F + 100 = \mbox{Grand-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\cdot2 + 100 = \mbox{Great-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\cdot3 + 100 = \mbox{Awesome-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\cdot100 + 100 = \mbox{Duexis-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow100 + 100 = \mbox{Polygonal-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow F + 100 = \mbox{Crazy-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow F \uparrow 2 + 100 = \mbox{Crazy-Mega-Grand-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow F \uparrow 3 + 100 = \mbox{Crazy-Giga-Grand-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow F \uparrow 100 + 100 = \mbox{Crazy-Polygonal-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F + F\uparrow F \uparrow (F\uparrow F \uparrow F + F\uparrow F \uparrow 100 + 100) + 100 = \mbox{Crazy-Polyhedral-on-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F \cdot2 + 100 = \mbox{2-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F \cdot3 + 100 = \mbox{3-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F \cdot4 + 100 = \mbox{4-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow F \uparrow F \cdot100 + 100 = \mbox{100-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + 1] + 100 = \mbox{Grand-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + 2] + 100 = \mbox{Mega-Grand-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + 3] + 100 = \mbox{Giga-Grand-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + 100] + 100 = \mbox{Polygonal-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F] + 100 = \mbox{Crazy-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\cdot2] + 100 = \mbox{Crazy-Great-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\cdot3] + 100 = \mbox{Crazy-Awesome-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\cdot100] + 100 = \mbox{Crazy-Duexis-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\uparrow2] + 100 = \mbox{Crazy-Mega-Grand-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\uparrow3] + 100 = \mbox{Crazy-Giga-Grand-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\uparrow4] + 100 = \mbox{Crazy-Tera-Grand-exta-Heliaxis Forcelithiasinn}\]

\[F\uparrow [F \uparrow F + F\uparrow 100] + 100 = \mbox{Crazy-Polygonal-exta-Heliaxis Forcelithiasinn}\]

I need to add a new infix to clarify order of operations. Here, "-lahz-" indicates that "Crazy-" applies to everything after it instead of just "2".

\[F\uparrow [F \uparrow F \cdot2] + 100 = \mbox{Crazy-lahz-2-exta-Crazy Forcelithiasinn}\]

\[F\uparrow [F \uparrow F \cdot3] + 100 = \mbox{Crazy-lahz-3-exta-Crazy Forcelithiasinn}\]

\[F\uparrow [F \uparrow F \cdot4] + 100 = \mbox{Crazy-lahz-4-exta-Crazy Forcelithiasinn}\]

\[F\uparrow [F \uparrow F \cdot100] + 100 = \mbox{Crazy-lahz-100-exta-Crazy Forcelithiasinn}\]

\[F\uparrow F \uparrow [F + 1] + 100 = \mbox{Crazy-lahz-Grand-exta-Crazy Forcelithiasinn}\]

\[F\uparrow F \uparrow [F + 2] + 100 = \mbox{Crazy-lahz-Mega-Grand-exta-Crazy Forcelithiasinn}\]

\[F\uparrow F \uparrow [F + 3] + 100 = \mbox{Crazy-lahz-Giga-Grand-exta-Crazy Forcelithiasinn}\]

\[F\uparrow F \uparrow [F + 100] + 100 = \mbox{Crazy-lahz-Polygonal-exta-Crazy Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \cdot2] + 100 = \mbox{Heliaxi-Great Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \cdot3] + 100 = \mbox{Heliaxi-Awesome Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \cdot4] + 100 = \mbox{Heliaxi-Fantastic Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \cdot100] + 100 = \mbox{Heliaxi-Duexis Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \uparrow2] + 100 = \mbox{Heliaxi-Mega-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \uparrow3] + 100 = \mbox{Heliaxi-Giga-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \uparrow4] + 100 = \mbox{Heliaxi-Tera-Grand Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \uparrow100] + 100 = \mbox{Heliaxi-Polygonal Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \uparrow(F\uparrow F \uparrow [F \uparrow100] + 100)] + 100 = \mbox{Heliaxi-Polyhedral Forcelithiasinn}\]

\[F\uparrow F \uparrow [F \uparrow(F\uparrow F \uparrow [F \uparrow(F\uparrow F \uparrow [F \uparrow100] + 100)] + 100)] + 100 = \mbox{Heliaxi-Polychoral Forcelithiasinn}\]

Forceberyliasinn Series

\[F\uparrow F \uparrow F \uparrow F + 100 = \mbox{Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F + 100) + 100 = \mbox{Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F + (F + 100) + 100) + 100 = \mbox{Second Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F + (F + (F + 100) + 100) + 100) + 100 = \mbox{Third Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\cdot2 + 100) + 100 = \mbox{Great Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\cdot3 + 100) + 100 = \mbox{Awesome Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\cdot4 + 100) + 100 = \mbox{Fantastic Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\cdot100 + 100) + 100 = \mbox{Duexis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F + 100) + 100 = \mbox{Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow2 + 100) + 100 = \mbox{Crazy-Mega-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow3 + 100) + 100 = \mbox{Crazy-Giga-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow100 + 100) + 100 = \mbox{Crazy-Polygonal Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F + 100) + 100 = \mbox{Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow 2 + 100) + 100 = \mbox{Heliaxi-Mega-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow 3 + 100) + 100 = \mbox{Heliaxi-Giga-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow 4 + 100) + 100 = \mbox{Heliaxi-Tera-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow 100 + 100) + 100 = \mbox{Heliaxi-Polygonal Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow F + 100) + 100 = \mbox{Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow F + 100) + 100) + 100 = \mbox{Lithiaxi-Second Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow F + (F\uparrow F\uparrow F \uparrow F + 100) + 100) + 100) + 100 = \mbox{Lithiaxi-Third Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F + 100 = \mbox{Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\cdot2 + 100 = \mbox{Great-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\cdot3 + 100 = \mbox{Awesome-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\cdot100 + 100 = \mbox{Duexis-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow100 + 100 = \mbox{Polygonal-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F + 100 = \mbox{Crazy-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow 2 + 100 = \mbox{Crazy-Mega-Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow 3 + 100 = \mbox{Crazy-Giga-Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow 100 + 100 = \mbox{Crazy-Polygonal-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow F + 100 = \mbox{Heliaxis-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow F \uparrow 2 + 100 = \mbox{Heliaxi-Mega-Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow F \uparrow 3 + 100 = \mbox{Heliaxi-Giga-Grand-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F + F\uparrow F \uparrow F \uparrow 100 + 100 = \mbox{Heliaxi-Polygonal-on-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F \cdot2 + 100 = \mbox{2-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F \cdot3 + 100 = \mbox{3-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F \cdot4 + 100 = \mbox{4-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow F \cdot100 + 100 = \mbox{100-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + 1] + 100 = \mbox{Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + 2] + 100 = \mbox{Mega-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + 3] + 100 = \mbox{Giga-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + 100] + 100 = \mbox{Polygonal-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F] + 100 = \mbox{Crazy-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\cdot2] + 100 = \mbox{Crazy-Great-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\cdot3] + 100 = \mbox{Crazy-Awesome-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\cdot100] + 100 = \mbox{Crazy-Duexis-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow2] + 100 = \mbox{Crazy-Mega-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow3] + 100 = \mbox{Crazy-Giga-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow4] + 100 = \mbox{Crazy-Tera-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow100] + 100 = \mbox{Crazy-Polygonal-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow F] + 100 = \mbox{Heliaxis-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow F\uparrow2] + 100 = \mbox{Heliaxi-Mega-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow F\uparrow3] + 100 = \mbox{Heliaxi-Giga-Grand-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F + F\uparrow F\uparrow100] + 100 = \mbox{Heliaxi-Polygonal-exta-Lithiaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F\cdot2] + 100 = \mbox{Crazy-lahz-2-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F\cdot3] + 100 = \mbox{Crazy-lahz-3-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F\cdot4] + 100 = \mbox{Crazy-lahz-4-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow [F \uparrow F \uparrow F\cdot100] + 100 = \mbox{Crazy-lahz-100-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + 1] + 100 = \mbox{Crazy-lahz-Grand-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + 2] + 100 = \mbox{Crazy-lahz-Mega-Grand-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + 3] + 100 = \mbox{Crazy-lahz-Giga-Grand-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + 100] + 100 = \mbox{Crazy-lahz-Polygonal-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F] + 100 = \mbox{Crazy-lahz-Crazy-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F\cdot2] + 100 = \mbox{Crazy-lahz-Crazy-Great-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F\cdot3] + 100 = \mbox{Crazy-lahz-Crazy-Awesome-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F\cdot100] + 100 = \mbox{Crazy-lahz-Crazy-Duexis-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F\uparrow2] + 100 = \mbox{Crazy-lahz-Crazy-Mega-Grand-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F\uparrow3] + 100 = \mbox{Crazy-lahz-Crazy-Giga-Grand-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F + F\uparrow4] + 100 = \mbox{Crazy-lahz-Crazy-Tera-Grand-exta-Heliaxis Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F \cdot2] + 100 = \mbox{Heliaxi-lahz-2-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F \cdot3] + 100 = \mbox{Heliaxi-lahz-3-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F \cdot4] + 100 = \mbox{Heliaxi-lahz-4-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow [F \uparrow F \cdot100] + 100 = \mbox{Heliaxi-lahz-100-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F + 1] + 100 = \mbox{Heliaxi-lahz-Grand-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F + 2] + 100 = \mbox{Heliaxi-lahz-Mega-Grand-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F + 3] + 100 = \mbox{Heliaxi-lahz-Giga-Grand-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F + 100] + 100 = \mbox{Heliaxi-lahz-Polygonal-exta-Crazy Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\cdot2] + 100 = \mbox{Lithiaxi-Great Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\cdot3] + 100 = \mbox{Lithiaxi-Awesome Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\cdot4] + 100 = \mbox{Lithiaxi-Fantastic Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\cdot100] + 100 = \mbox{Lithiaxi-Duexis Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\uparrow2] + 100 = \mbox{Lithiaxi-Mega-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\uparrow3] + 100 = \mbox{Lithiaxi-Giga-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\uparrow4] + 100 = \mbox{Lithiaxi-Tera-Grand Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\uparrow100] + 100 = \mbox{Lithiaxi-Polygonal Forceberyliasinn}\]

\[F\uparrow F \uparrow F \uparrow [F\uparrow([F\uparrow F \uparrow F \uparrow [F\uparrow100] + 100)] + 100 = \mbox{Lithiaxi-Polyhedral Forceberyliasinn}\]

Forceborosinn Series

This is the last series for now. It'll be a short one.

\[F\uparrow F \uparrow F \uparrow F \uparrow F + 100 = \mbox{Forceborosinn}\]

\[F\uparrow F \uparrow F \uparrow F \uparrow F \uparrow F + 100 = \mbox{Forcecarbosinn}\]

\[F\uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F + 100 = \mbox{Forcenitrosinn}\]

\[F\uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F + 100 = \mbox{Forceoxysinn}\]

\[F\uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F + 100 = \mbox{Forcefluorisinn}\]

\[F\uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F \uparrow F + 100 = \mbox{Forceneosinn}\]

Even More Numbers

The jumps from f(100) to f(F) are not worth much after this point -- This one only gets us from \(\varepsilon_0\) to \(\omega^{\varepsilon_0+1}\) in FGH, so I've made it really short.

\[F\uparrow\uparrow100 + 100 = \mbox{Forcesinndrex}\]

\[F\uparrow\uparrow(F\uparrow\uparrow100 + 100) + 100 = \mbox{Forcesinnthrex}\]

\[F\uparrow\uparrow(F\uparrow\uparrow(F\uparrow\uparrow100 + 100) + 100) + 100 = \mbox{Forcesinntetrex}\]

\[F\uparrow\uparrow\hat{F} + 100|5 = \mbox{Forcesinnpentex}\]

\[F\uparrow\uparrow\hat{F} + 100|6 = \mbox{Forcesinnhextex}\]

\[F\uparrow\uparrow\hat{F} + 100|7 = \mbox{Forcesinnheptex}\]

\[F\uparrow\uparrow\hat{F} + 100|8 = \mbox{Forcesinnoctex}\]

\[F\uparrow\uparrow\hat{F} + 100|9 = \mbox{Forcesinnennex}\]

\[F\uparrow\uparrow\hat{F} + 100|10 = \mbox{Forcesinndektex}\]

\[F\uparrow\uparrow F + 100 = \mbox{Forcesintetrann}\]

\[F\uparrow\uparrow F + (F + 100) + 100 = \mbox{Grand Forcesintetrann}\]

\[F\uparrow\uparrow F + (F + (F + 100) + 100) + 100 = \mbox{Second Forcesintetrann}\]

\[F\uparrow\uparrow F + (F + (F + (F + 100) + 100) + 100) + 100 = \mbox{Third Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\cdot2 + 100) + 100 = \mbox{Great Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\cdot3 + 100) + 100 = \mbox{Awesome Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\cdot4 + 100) + 100 = \mbox{Fantastic Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\cdot100 + 100) + 100 = \mbox{Duexis Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow2 + 100) + 100 = \mbox{Crazy Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow F\uparrow2 + 100) + 100 = \mbox{Crazy-Mega-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow F\uparrow3 + 100) + 100 = \mbox{Crazy-Giga-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow F\uparrow100 + 100) + 100 = \mbox{Crazy-Polygonal Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow3 + 100) + 100 = \mbox{Heliaxis Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow4 + 100) + 100 = \mbox{Lithiaxis Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow5 + 100) + 100 = \mbox{Berylliaxis Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow100 + 100) + 100 = \mbox{Drexst Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow(F\uparrow\uparrow100 + 100) + 100) + 100 = \mbox{Threxst Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow(F\uparrow\uparrow(F\uparrow\uparrow100 + 100) + 100) + 100) + 100 = \mbox{Tetrexst Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow F + 100) + 100 = \mbox{Ridiculous Forcesintetrann}\]

Ridiculously- is the tetrational equivalent of Crazy- -- it bumps X up to F ^^ X.

\[F\uparrow\uparrow F + (F\uparrow\uparrow F + (F\uparrow\uparrow F + 100) + 100) + 100 = \mbox{Ridiculously-Second Forcesintetrann}\]

\[F\uparrow\uparrow F + (F\uparrow\uparrow F + (F\uparrow\uparrow F + (F\uparrow\uparrow F + 100) + 100) + 100) + 100 = \mbox{Ridiculously-Third Forcesintetrann}\]

\[F\uparrow\uparrow F + F + 100 = \mbox{Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F + (F\uparrow\uparrow F + F + 100) + 100 = \mbox{Second-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\cdot2 + 100 = \mbox{Great-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\cdot3 + 100 = \mbox{Awesome-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\cdot4 + 100 = \mbox{Fantastic-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\cdot100 + 100 = \mbox{Duexis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow100 + 100 = \mbox{Polygonal-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F + F\uparrow\uparrow100 + 100 = \mbox{Drexst-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot2 + 100 = \mbox{2-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot3 + 100 = \mbox{3-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot4 + 100 = \mbox{4-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot100 + 100 = \mbox{100-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F + 100 = \mbox{Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\cdot2 + 100 = \mbox{Great-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\cdot3 + 100 = \mbox{Awesome-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\cdot100 + 100 = \mbox{Duexis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow3 + 100 = \mbox{Giga-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow4 + 100 = \mbox{Tera-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow100 + 100 = \mbox{Polygonal-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\cdot F\uparrow\uparrow100 + 100 = \mbox{Drexst-exta-Ridiculous Forcesintetrann}\]

Let -force- be the next infix, which exponentiates modifiers: X-force-Y = [Y] ^ [X]

\[ [F\uparrow\uparrow F]\uparrow2 + 100 = \mbox{2-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow3 + 100 = \mbox{3-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow4 + 100 = \mbox{4-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow100 + 100 = \mbox{100-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow F + 100 = \mbox{Grand-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\cdot2] + 100 = \mbox{Great-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\cdot3] + 100 = \mbox{Awesome-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\cdot4] + 100 = \mbox{Fantastic-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\cdot100] + 100 = \mbox{Duexis-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow2] + 100 = \mbox{Mega-Grand-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow3] + 100 = \mbox{Giga-Grand-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow4] + 100 = \mbox{Tera-Grand-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow100] + 100 = \mbox{Polygonal-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow\uparrow2] + 100 = \mbox{Crazy-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow\uparrow3] + 100 = \mbox{Heliaxis-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow\uparrow4] + 100 = \mbox{Lithiaxis-force-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow\uparrow100] + 100 = \mbox{Drexst-force-Ridiculous Forcesintetrann}\]

Looks like we already need a tetrational infix:

\[ [F\uparrow\uparrow F]\uparrow [F\uparrow\uparrow F] + 100 = \mbox{2-cross-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow\uparrow3 + 100 = \mbox{3-cross-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow\uparrow4 + 100 = \mbox{4-cross-Ridiculous Forcesintetrann}\]

\[ [F\uparrow\uparrow F]\uparrow\uparrow100 + 100 = \mbox{100-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\cdot2] + 100 = \mbox{Ridiculously-Great Forcesintetrann}\]

\[F\uparrow\uparrow [F\cdot3] + 100 = \mbox{Ridiculously-Awesome Forcesintetrann}\]

\[F\uparrow\uparrow [F\cdot4] + 100 = \mbox{Ridiculously-Fantastic Forcesintetrann}\]

\[F\uparrow\uparrow [F\cdot100] + 100 = \mbox{Ridiculously-Duexis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ridiculously-Mega-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow3 + 100 = \mbox{Ridiculously-Giga-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow4 + 100 = \mbox{Ridiculously-Tera-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow100 + 100 = \mbox{Ridiculously-Polygonal Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ridiculously-Crazy Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ridiculously-Heliaxis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Ridiculously-Lithiaxis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ridiculously-Drexst Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + 100 = \mbox{Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + (F\uparrow\uparrow F\uparrow\uparrow F + 100) + 100 = \mbox{Extremely-Second Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + (F\uparrow\uparrow F\uparrow\uparrow F + (F\uparrow\uparrow F\uparrow\uparrow F + 100) + 100) + 100 = \mbox{Extremely-Third Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F + 100 = \mbox{Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\cdot2 + 100 = \mbox{Great-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\cdot3 + 100 = \mbox{Awesome-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\cdot100 + 100 = \mbox{Duexis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow100 + 100 = \mbox{Polygonal-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow100 + 100 = \mbox{Drexst-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F + 100 = \mbox{Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot2 + 100 = \mbox{2-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot3 + 100 = \mbox{3-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot100 + 100 = \mbox{100-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F + 100 = \mbox{Grand-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow3 + 100 = \mbox{Giga-Grand-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow100 + 100 = \mbox{Polygonal-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow\uparrow 3 + 100 = \mbox{Heliaxis-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow\uparrow 4 + 100 = \mbox{Lithiaxis-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \cdot F\uparrow\uparrow 100 + 100 = \mbox{Drexst-exta-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow 2 + 100 = \mbox{2-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow 3 + 100 = \mbox{3-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow 4 + 100 = \mbox{4-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow 100 + 100 = \mbox{100-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F + 100 = \mbox{Grand-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow [F\cdot2] + 100 = \mbox{Great-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow [F\cdot3] + 100 = \mbox{Awesome-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow [F\cdot100] + 100 = \mbox{Duexis-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow3 + 100 = \mbox{Giga-Grand-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow4 + 100 = \mbox{Tera-Grand-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow100 + 100 = \mbox{Ponygonal-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow F\uparrow\uparrow100 + 100 = \mbox{Drexst-force-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow\uparrow2 + 100 = \mbox{2-cross-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow\uparrow3 + 100 = \mbox{3-cross-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow\uparrow4 + 100 = \mbox{4-cross-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + [F\uparrow\uparrow F] \uparrow\uparrow100 + 100 = \mbox{100-cross-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow [F\cdot2] + 100 = \mbox{Ridiculously-Great-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow [F\cdot3] + 100 = \mbox{Ridiculously-Awesome-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow [F\cdot4] + 100 = \mbox{Ridiculously-Fantastic-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow [F\cdot100] + 100 = \mbox{Ridiculously-Duexis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ridiculously-Mega-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow3 + 100 = \mbox{Ridiculously-Giga-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow4 + 100 = \mbox{Ridiculously-Tera-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow100 + 100 = \mbox{Ridiculously-Polygonal-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ridiculously-Crazy-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ridiculously-Heliaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Ridiculously-Lithiaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ridiculously-Drexst-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot2 + 100 = \mbox{2-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot3 + 100 = \mbox{3-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot4 + 100 = \mbox{4-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot100 + 100 = \mbox{100-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F + 100 = \mbox{Grand-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow100 + 100 = \mbox{Drexst-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow F + 100 = \mbox{Ridiculous-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow F \uparrow\uparrow2 + 100 = \mbox{Ridiculously-Crazy-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow F \uparrow\uparrow3 + 100 = \mbox{Ridiculously-Heliaxis-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow F \uparrow\uparrow4 + 100 = \mbox{Ridiculously-Lithiaxis-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F \cdot F\uparrow\uparrow F \uparrow\uparrow100 + 100 = \mbox{Ridiculously-Drexst-exta-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow2 + 100 = \mbox{2-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow3 + 100 = \mbox{3-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow4 + 100 = \mbox{4-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow100 + 100 = \mbox{100-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow F + 100 = \mbox{Grand-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow2] + 100 = \mbox{Crazy-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow3] + 100 = \mbox{Heliaxis-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow4] + 100 = \mbox{Lithiaxis-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow100] + 100 = \mbox{Drexst-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow F] + 100 = \mbox{Ridiculous-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow F \uparrow\uparrow2] + 100 = \mbox{Ridiculously-Crazy-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow F \uparrow\uparrow3] + 100 = \mbox{Ridiculously-Heliaxis-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow [F\uparrow\uparrow F \uparrow\uparrow100] + 100 = \mbox{Ridiculously-Drexst-force-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow\uparrow2 + 100 = \mbox{2-cross-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow\uparrow3 + 100 = \mbox{2-cross-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow\uparrow4 + 100 = \mbox{2-cross-Extreme Forcesintetrann}\]

\[ [F\uparrow\uparrow F\uparrow\uparrow F] \uparrow\uparrow100 + 100 = \mbox{2-cross-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F] + 100 = \mbox{Ridiculous-lahz-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \cdot2] + 100 = \mbox{Ridiculous-lahz-Great-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \cdot3] + 100 = \mbox{Ridiculous-lahz-Awesome-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \cdot4] + 100 = \mbox{Ridiculous-lahz-Fantastic-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \cdot100] + 100 = \mbox{Ridiculous-lahz-Duexis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow2] + 100 = \mbox{Ridiculous-lahz-Mega-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow3] + 100 = \mbox{Ridiculous-lahz-Giga-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow4] + 100 = \mbox{Ridiculous-lahz-Tera-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow100] + 100 = \mbox{Ridiculous-lahz-Polygonal-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow\uparrow2] + 100 = \mbox{Ridiculous-lahz-Crazy-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow\uparrow3] + 100 = \mbox{Ridiculous-lahz-Heliaxis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow\uparrow4] + 100 = \mbox{Ridiculous-lahz-Lithiaxis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F + F \uparrow\uparrow100] + 100 = \mbox{Ridiculous-lahz-Drexst-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot2] + 100 = \mbox{Ridiculous-lahz-2-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot3] + 100 = \mbox{Ridiculous-lahz-3-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot4] + 100 = \mbox{Ridiculous-lahz-4-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot100] + 100 = \mbox{Ridiculous-lahz-100-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot F] + 100 = \mbox{Ridiculous-lahz-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow2] + 100 = \mbox{Ridiculous-lahz-Crazy-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow3] + 100 = \mbox{Ridiculous-lahz-Heliaxis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow4] + 100 = \mbox{Ridiculous-lahz-Lithiaxis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow100] + 100 = \mbox{Ridiculous-lahz-Drexst-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow2 + 100 = \mbox{Ridiculous-lahz-2-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow3 + 100 = \mbox{Ridiculous-lahz-3-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow4 + 100 = \mbox{Ridiculous-lahz-4-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow100 + 100 = \mbox{Ridiculous-lahz-100-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F + 100 = \mbox{Ridiculous-lahz-Grand-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow2 + 100 = \mbox{Ridiculous-lahz-Crazy-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow3 + 100 = \mbox{Ridiculous-lahz-Heliaxis-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow4 + 100 = \mbox{Ridiculous-lahz-Lithiaxis-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow100 + 100 = \mbox{Ridiculous-lahz-Drexst-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow2 + 100 = \mbox{Ridiculous-lahz-2-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow3 + 100 = \mbox{Ridiculous-lahz-3-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow4 + 100 = \mbox{Ridiculous-lahz-4-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow100 + 100 = \mbox{Ridiculous-lahz-100-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\cdot2] + 100 = \mbox{Extremely-Great Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\cdot3] + 100 = \mbox{Extremely-Awesome Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\cdot4] + 100 = \mbox{Extremely-Fantastic Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\cdot100] + 100 = \mbox{Extremely-Duexis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow2 + 100 = \mbox{Extremely-Mega-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow3 + 100 = \mbox{Extremely-Giga-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow4 + 100 = \mbox{Extremely-Tera-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow100 + 100 = \mbox{Extremely-Polygonal Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Extremely-Crazy Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Extremely-Heliaxis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Extremely-Lithiaxis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Extremely-Drexst Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + 100 = \mbox{Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + (F\uparrow\uparrow\uparrow4 + 100) + 100 = \mbox{Atrociously-Second Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F + 100 = \mbox{Grand-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\cdot2 + 100 = \mbox{Great-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\cdot3 + 100 = \mbox{Awesome-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\cdot100 + 100 = \mbox{Duexis-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow100 + 100 = \mbox{Polygonal-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow100 + 100 = \mbox{Drexst-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ridiculously-Crazy-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ridiculously-Heliaxis-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Ridiculously-Lithiaxis-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ridiculously-Drexst-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Extremely-Crazy-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Extremely-Heliaxis-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4 + F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Extremely-Drexst-on-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot2 + 100 = \mbox{2-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot3 + 100 = \mbox{3-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot4 + 100 = \mbox{4-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot100 + 100 = \mbox{100-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F + 100 = \mbox{Grand-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow3 + 100 = \mbox{Giga-Grand-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow100 + 100 = \mbox{Polygonal-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow100 + 100 = \mbox{Drexst-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ridiculously-Crazy-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ridiculously-Heliaxis-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ridiculously-Drexst-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Extremely-Crazy-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Extremely-Crazy-exta-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow4\cdot F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Extremely-Crazy-exta-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow2 + 100 = \mbox{2-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow3 + 100 = \mbox{3-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow4 + 100 = \mbox{4-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow100 + 100 = \mbox{100-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F + 100 = \mbox{Grand-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow2 = \mbox{Mega-Grand-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow3 = \mbox{Giga-Grand-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow100 = \mbox{Polygonal-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow100 + 100 = \mbox{Drexst-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ridiculously-Crazy-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ridiculously-Heliaxis-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ridiculously-Drexst-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Extremely-Crazy-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Extremely-Heliaxis-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Extremely-Drexst-force-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow\uparrow2 + 100 = \mbox{2-cross-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow\uparrow3 + 100 = \mbox{3-cross-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow\uparrow4 + 100 = \mbox{4-cross-Atrocious Forcesintetrann}\]

\[ [F\uparrow\uparrow\uparrow4]\uparrow\uparrow100 + 100 = \mbox{100-cross-Atrocious Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F] + 100 = \mbox{Ridiculous-lahz-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\cdot2] + 100 = \mbox{Ridiculous-lahz-Great-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\cdot3] + 100 = \mbox{Ridiculous-lahz-Awesome-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\cdot100] + 100 = \mbox{Ridiculous-lahz-Duexis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow2] + 100 = \mbox{Ridiculous-lahz-Mega-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow3] + 100 = \mbox{Ridiculous-lahz-Giga-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow4] + 100 = \mbox{Ridiculous-lahz-Tera-Grand-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow100] + 100 = \mbox{Ridiculous-lahz-Polygonal-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow2] + 100 = \mbox{Ridiculous-lahz-Crazy-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow3] + 100 = \mbox{Ridiculous-lahz-Heliaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow4] + 100 = \mbox{Ridiculous-lahz-Lithiaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow100] + 100 = \mbox{Ridiculous-lahz-Drexst-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F] + 100 = \mbox{Ridiculous-lahz-Ridiculous-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \uparrow\uparrow2] + 100 = \mbox{Ridiculous-lahz-Ridiculously-Crazy-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \uparrow\uparrow3] + 100 = \mbox{Ridiculous-lahz-Ridiculously-Heliaxis-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F + F\uparrow\uparrow F \uparrow\uparrow100] + 100 = \mbox{Ridiculous-lahz-Ridiculously-Drexst-on-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot2] + 100 = \mbox{Ridiculous-lahz-2-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot3] + 100 = \mbox{Ridiculous-lahz-3-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot4] + 100 = \mbox{Ridiculous-lahz-4-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot100] + 100 = \mbox{Ridiculous-lahz-100-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F] + 100 = \mbox{Ridiculous-lahz-Grand-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow2] + 100 = \mbox{Ridiculous-lahz-Crazy-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow3] + 100 = \mbox{Ridiculous-lahz-Heliaxis-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow100] + 100 = \mbox{Ridiculous-lahz-Drexst-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow F] + 100 = \mbox{Ridiculous-lahz-Ridiculous-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow F\uparrow\uparrow2] + 100 = \mbox{Ridiculous-lahz-Ridiculous-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow F\uparrow\uparrow3] + 100 = \mbox{Ridiculous-lahz-Heliaxis-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F\cdot F \uparrow\uparrow F\uparrow\uparrow100] + 100 = \mbox{Ridiculous-lahz-Drexst-exta-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow2 + 100 = \mbox{Ridiculous-lahz-2-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow3 + 100 = \mbox{Ridiculous-lahz-3-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow4 + 100 = \mbox{Ridiculous-lahz-4-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow100 + 100 = \mbox{Ridiculous-lahz-100-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F + 100 = \mbox{Ridiculous-lahz-Grand-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow2 + 100 = \mbox{Ridiculous-lahz-Crazy-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow3 + 100 = \mbox{Ridiculous-lahz-Heliaxis-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow100 + 100 = \mbox{Ridiculous-lahz-Drexst-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow F + 100 = \mbox{Ridiculous-lahz-Ridiculous-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ridiculous-lahz-Ridiculously-Crazy-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ridiculous-lahz-Ridiculously-Heliaxis-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow F \uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ridiculous-lahz-Ridiculously-Drexst-force-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow\uparrow2 + 100 = \mbox{Ridiculously-lahz-2-cross-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow\uparrow3 + 100 = \mbox{Ridiculously-lahz-3-cross-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow\uparrow4 + 100 = \mbox{Ridiculously-lahz-4-cross-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow [F\uparrow\uparrow F\uparrow\uparrow F]\uparrow\uparrow100 + 100 = \mbox{Ridiculously-lahz-100-cross-Extreme Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F] + 100 = \mbox{Extreme-lahz-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\cdot2] + 100 = \mbox{Extreme-lahz-Great-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\cdot3] + 100 = \mbox{Extreme-lahz-Awesome-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\cdot100] + 100 = \mbox{Extreme-lahz-Duexis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow2] + 100 = \mbox{Extreme-lahz-Mega-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow3] + 100 = \mbox{Extreme-lahz-Giga-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow4] + 100 = \mbox{Extreme-lahz-Tera-Grand-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow 100] + 100 = \mbox{Extreme-lahz-Polygonal-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow\uparrow2] + 100 = \mbox{Extreme-lahz-Crazy-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow\uparrow3] + 100 = \mbox{Extreme-lahz-Heliaxis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow\uparrow4] + 100 = \mbox{Extreme-lahz-Lithiaxis-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F + F\uparrow\uparrow100] + 100 = \mbox{Extreme-lahz-Drexst-on-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot2] + 100 = \mbox{Extreme-lahz-2-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot3] + 100 = \mbox{Extreme-lahz-3-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot4] + 100 = \mbox{Extreme-lahz-4-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot100] + 100 = \mbox{Extreme-lahz-100-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F] + 100 = \mbox{Extreme-lahz-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow2] + 100 = \mbox{Extreme-lahz-Mega-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow3] + 100 = \mbox{Extreme-lahz-Giga-Grand-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow100] + 100 = \mbox{Extreme-lahz-Polygonal-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow2] + 100 = \mbox{Extreme-lahz-Crazy-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow3] + 100 = \mbox{Extreme-lahz-Heliaxis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow4] + 100 = \mbox{Extreme-lahz-Lithiaxis-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F\cdot F\uparrow\uparrow100] + 100 = \mbox{Extreme-lahz-Drexst-exta-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow2 + 100 = \mbox{Extreme-lahz-2-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow3 + 100 = \mbox{Extreme-lahz-3-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow4 + 100 = \mbox{Extreme-lahz-4-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow100 + 100 = \mbox{Extreme-lahz-100-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F + 100 = \mbox{Extreme-lahz-Grand-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow2 + 100 = \mbox{Extreme-lahz-Crazy-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow3 + 100 = \mbox{Extreme-lahz-Heliaxis-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow F \uparrow\uparrow100 + 100 = \mbox{Extreme-lahz-Drexst-force-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow2 + 100 = \mbox{Extremely-lahz-2-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow3 + 100 = \mbox{Extremely-lahz-3-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow4 + 100 = \mbox{Extremely-lahz-4-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow [F\uparrow\uparrow F]\uparrow\uparrow100 + 100 = \mbox{Extremely-lahz-100-cross-Ridiculous Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow [F\cdot2] + 100 = \mbox{Atrociously-Great Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow [F\cdot3] + 100 = \mbox{Atrociously-Awesome Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow [F\cdot4] + 100 = \mbox{Atrociously-Fantastic Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow [F\cdot100] + 100 = \mbox{Atrociously-Duexis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow2 + 100 = \mbox{Atrociously-Mega-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow3 + 100 = \mbox{Atrociously-Giga-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow4 + 100 = \mbox{Atrociously-Tera-Grand Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow100 + 100 = \mbox{Atrociously-Polygonal Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Atrociously-Crazy Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Atrociously-Heliaxis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Atrociously-Lithiaxis Forcesintetrann}\]

\[F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Atrociously-Drexst Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow5 + 100 = \mbox{Frightful Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow6 + 100 = \mbox{Immense Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow7 + 100 = \mbox{Terrifying Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow8 + 100 = \mbox{Obscene Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow9 + 100 = \mbox{Exceptional Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow10 + 100 = \mbox{Ludicrous Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow100 + 100 = \mbox{Drastic Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow(F\uparrow\uparrow\uparrow100 + 100) + 100 = \mbox{Thrastic Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow(F\uparrow\uparrow\uparrow(F\uparrow\uparrow\uparrow100 + 100) + 100) + 100 = \mbox{Tetrastic Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow(F\uparrow\uparrow\uparrow(F\uparrow\uparrow\uparrow(F\uparrow\uparrow\uparrow100 + 100) + 100) + 100) + 100 = \mbox{Pentastic Forcesintetrann}\]

\[F\uparrow\uparrow\uparrow F + 100 = \mbox{Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F + 100) + 100 = \mbox{Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F + (F + 100) + 100) + 100 = \mbox{Second Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F + (F + (F + 100) + 100) + 100) + 100 = \mbox{Third Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\cdot2 + 100) + 100 = \mbox{Great Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\cdot3 + 100) + 100 = \mbox{Awesome Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\cdot4 + 100) + 100 = \mbox{Fantastic Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\cdot100 + 100) + 100 = \mbox{Duexis Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow3 + 100) + 100 = \mbox{Giga-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow4 + 100) + 100 = \mbox{Tera-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow100 + 100) + 100 = \mbox{Polygonal Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow2 + 100) + 100 = \mbox{Crazy Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow3 + 100) + 100 = \mbox{Heliaxis Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow4 + 100) + 100 = \mbox{Lithiaxis Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow100 + 100) + 100 = \mbox{Drexst Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow2 + 100) + 100 = \mbox{Ridiculous Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow3 + 100) + 100 = \mbox{Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow4 + 100) + 100 = \mbox{Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow100 + 100) + 100 = \mbox{Drastic Forcesinpentann}\]

Rather than make a whole new set of pentation-level modifiers, I'll just use "Ungodfully-" to promote tetrational modifiers into pentational ones. When the modifier happens to be Ridiculous, it can be dropped for brevity.

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow F + 100) + 100 = \mbox{Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow F + (F\uparrow\uparrow\uparrow F + 100) + 100) + 100 = \mbox{Ungodfully-Ridiculously-Second Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F + 100 = \mbox{Grand-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\cdot2 + 100 = \mbox{Great-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\cdot3 + 100 = \mbox{Awesome-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\cdot100 + 100 = \mbox{Duexis-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow3 + 100 = \mbox{Giga-Grand-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow4 + 100 = \mbox{Tera-Grand-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow100 + 100 = \mbox{Polygonal-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow100 + 100 = \mbox{Drexst-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow\uparrow4 + 100 = \mbox{Atrocious-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F + F\uparrow\uparrow\uparrow100 + 100 = \mbox{Drastic-on-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot2 + 100 = \mbox{2-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot3 + 100 = \mbox{3-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot4 + 100 = \mbox{4-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot100 + 100 = \mbox{100-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F + 100 = \mbox{Grand-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\cdot2 + 100 = \mbox{Great-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\cdot3 + 100 = \mbox{Awesome-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\cdot100 + 100 = \mbox{Duexis-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow3 + 100 = \mbox{Giga-Grand-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow4 + 100 = \mbox{Tera-Grand-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow100 + 100 = \mbox{Polygonal-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow100 + 100 = \mbox{Drexst-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow\uparrow4 + 100 = \mbox{Atrocious-exta-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow\uparrow100 + 100 = \mbox{Drastic-exta-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow2 + 100 = \mbox{2-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow3 + 100 = \mbox{3-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow4 + 100 = \mbox{4-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow100 + 100 = \mbox{100-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F + 100 = \mbox{Grand-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow [F\cdot2] + 100 = \mbox{Great-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow [F\cdot3] + 100 = \mbox{Awesome-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow [F\cdot100] + 100 = \mbox{Duexis-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow3 + 100 = \mbox{Giga-Grand-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow4 + 100 = \mbox{Tera-Grand-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow100 + 100 = \mbox{Polygonal-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow100 + 100 = \mbox{Drexst-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow\uparrow4 + 100 = \mbox{Atrocious-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow F\uparrow\uparrow\uparrow100 + 100 = \mbox{Drastic-force-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow2 + 100 = \mbox{2-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow3 + 100 = \mbox{3-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow4 + 100 = \mbox{4-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow100 + 100 = \mbox{100-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F + 100 = \mbox{Grand-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow [F\cdot2] + 100 = \mbox{Great-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow [F\cdot3] + 100 = \mbox{Awesome-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow [F\cdot100] + 100 = \mbox{Duexis-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow3 + 100 = \mbox{Giga-Grand-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow4 + 100 = \mbox{Tera-Grand-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow100 + 100 = \mbox{Polygonal-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Heliaxis-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Lithiaxis-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Drexst-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow\uparrow3 + 100 = \mbox{Extreme-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow\uparrow4 + 100 = \mbox{Atrocious-cross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow F\uparrow\uparrow\uparrow100 + 100 = \mbox{Drastic-cross-Ungodful Forcesinpentann}\]

So far pentation is "ungodful", so let's have the next infix be:

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow\uparrow2 + 100 = \mbox{2-anticross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow\uparrow3 + 100 = \mbox{3-anticross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow\uparrow4 + 100 = \mbox{4-anticross-Ungodful Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow F] \uparrow\uparrow\uparrow100 + 100 = \mbox{100-anticross-Ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\cdot2] + 100 = \mbox{Ungodfully-Ridiculously-Great Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\cdot3] + 100 = \mbox{Ungodfully-Ridiculously-Awesome Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\cdot4] + 100 = \mbox{Ungodfully-Ridiculously-Fantastic Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\cdot100] + 100 = \mbox{Ungodfully-Ridiculously-Duexis Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Ridiculously-Mega-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow3 + 100 = \mbox{Ungodfully-Ridiculously-Giga-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow4 + 100 = \mbox{Ungodfully-Ridiculously-Tera-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow100 + 100 = \mbox{Ungodfully-Ridiculously-Polygonal Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculously-Crazy Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow3 + 100 = \mbox{Ungodfully-Ridiculously-Heliaxis Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow4 + 100 = \mbox{Ungodfully-Ridiculously-Lithiaxis Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Ridiculously-Drexst Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculously-Ridiculous Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-Ridiculously-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow4 + 100 = \mbox{Ungodfully-Ridiculously-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Ridiculously-Drastic Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 + F + 100 = \mbox{Grand-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-on-Ungodfully-Extreme Forcesinpentann}\]

This next one should be "Ungodfully-Ridiculous-on-Ungodfully-Extreme", but to avoid repeating "Ungodfully" I'll do this instead:

\[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-on-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 \cdot2 + 100 = \mbox{2-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 \cdot F + 100 = \mbox{Grand-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-exta-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow2 + 100 = \mbox{2-force-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow F + 100 = \mbox{Grand-force-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-force-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-force-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-force-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow2 + 100 = \mbox{2-cross-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F + 100 = \mbox{Grand-cross-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F \uparrow2 + 100 = \mbox{Mega-Grand-cross-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F \uparrow\uparrow2 + 100 = \mbox{Crazy-cross-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F \uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-cross-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F \uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-cross-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow2 + 100 = \mbox{2-anticross-Ungodfully-Extreme Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow100 + 100 = \mbox{100-anticross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F + F] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F + F\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F + F\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F + F\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F \cdot2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F \cdot F] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F \cdot F\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F \cdot F\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow F + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow F + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-anticross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow F]\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Ridiculous-lahz-100-anticross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\cdot2] + 100 = \mbox{Ungodfully-Extremely-Great Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Extremely-Mega-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extremely-Crazy Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extremely-Ridiculous Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-Extremely-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow4 + 100 = \mbox{Ungodfully-Extremely-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow5 + 100 = \mbox{Ungodfully-Extremely-Frightful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Extremely-Drastic Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + 100 = \mbox{Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + F + 100 = \mbox{Grand-on-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-on-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-on-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4 + F\uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-lahz-Extreme-on-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot2 + 100 = \mbox{2-exta-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot F + 100 = \mbox{Grand-exta-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot F \uparrow2 + 100 = \mbox{Mega-Grand-exta-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot F \uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot F \uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-exta-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot F \uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-exta-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow4\cdot F \uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-lahz-Extreme-exta-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4]\uparrow2 + 100 = \mbox{2-force-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow F + 100 = \mbox{Grand-force-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-force-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-force-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-force-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow F\uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-lahz-Extreme-force-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow2 + 100 = \mbox{2-cross-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow F + 100 = \mbox{Grand-cross-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-cross-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-cross-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-cross-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-lahz-Ridiculous-cross-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-lahz-Extreme-cross-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow\uparrow2 + 100 = \mbox{2-anticross-Ungodfully-Atrocious Forcesinpentann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow4\]\uparrow\uparrow\uparrow100 + 100 = \mbox{100-anticross-Ungodfully-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3 + F] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-on-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ungodfully-lahz-Ridiculous-on-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3\cdot2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3\cdot F] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3\cdot F\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3\cdot F\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3\cdot F\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-exta-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3\cdot F\uparrow\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ungodfully-lahz-Ridiculous-exta-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-force-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow F + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-force-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-force-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazy-force-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-force-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ungodfully-lahz-Ridiclous-force-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-cross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F + 100 = \mbox{Ungodfully-Ridiculous-lahz-Grand-cross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Mega-Grand-cross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Crazt-cross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ridiculous-cross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-Ungodfully-Ridiculous-cross-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Ridiculous-lahz-2-anticross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Ridiculous-lahz-100-anticross-Ungodfully-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 + F] + 100 = \mbox{Ungodfully-Extreme-lahz-Grand-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 + F\uparrow2] + 100 = \mbox{Ungodfully-Extreme-lahz-Mega-Grand-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Extreme-lahz-Crazy-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Extreme-lahz-Ridiculous-on-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 \cdot2] + 100 = \mbox{Ungodfully-Extreme-lahz-2-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 \cdot F] + 100 = \mbox{Ungodfully-Extreme-lahz-Grand-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow2] + 100 = \mbox{Ungodfully-Extreme-lahz-Mega-Grand-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Extreme-lahz-Crazy-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow\uparrow\uparrow2] + 100 = \mbox{Ungodfully-Extreme-lahz-Ridiculous-exta-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-2-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow F + 100 = \mbox{Ungodfully-Extreme-lahz-Grand-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-Mega-Grand-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-Crazy-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-Ridiculous-force-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-2-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F + 100 = \mbox{Ungodfully-Extreme-lahz-Grand-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-Mega-Grand-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-Crazy-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-Ridiculous-cross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Extreme-lahz-2-anticross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Extreme-lahz-100-anticross-ungodful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow [F\cdot2] + 100 = \mbox{Ungodfully-Atrociously-Great Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Ungodfully-Atrociously-Mega-Grand Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Atrociously-Crazy Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodfully-Atrociously-Ridiculous Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow3 + 100 = \mbox{Ungodfully-Atrociously-Extreme Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow4 + 100 = \mbox{Ungodfully-Atrociously-Atrocious Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow5 + 100 = \mbox{Ungodfully-Atrociously-Frightful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Atrociously-Drastic Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow5 + 100 = \mbox{Ungodfully-Frightful Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow6 + 100 = \mbox{Ungodfully-Immense Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow7 + 100 = \mbox{Ungodfully-Terrifying Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow8 + 100 = \mbox{Ungodfully-Obscene Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow9 + 100 = \mbox{Ungodfully-Exceptional Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow10 + 100 = \mbox{Ungodfully-Ludicrous Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow100 + 100 = \mbox{Ungodfully-Drastic Forcesinpentann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F + 100) + 100 = \mbox{Grand Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F + (F + 100) + 100) + 100 = \mbox{Second Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\cdot2 + 100) + 100 = \mbox{Great Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\uparrow2 + 100) + 100 = \mbox{Mega-Grand Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\uparrow\uparrow2 + 100) + 100 = \mbox{Crazy Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\uparrow\uparrow\uparrow2 + 100) + 100 = \mbox{Ridiculous Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\uparrow\uparrow\uparrow\uparrow2 + 100) + 100 = \mbox{Ungodful Forcesinhexann}\]

I'm too lazy to come up with creative names for super-super-super-super-modifiers after Ungodfully-, so I will begin to standardise them along with their respective stacking infixes. They still sound silly, though, which is the important part.

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\uparrow\uparrow\uparrow\uparrow F + 100) + 100 = \mbox{Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F + 100 = \mbox{Grand-on-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-on-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-on-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot2 + 100 = \mbox{2-exta-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot F + 100 = \mbox{Grand-exta-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-exta-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-exta-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow2 + 100 = \mbox{2-force-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F + 100 = \mbox{Grand-force-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-force-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-force-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-force-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow2 + 100 = \mbox{2-cross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F + 100 = \mbox{Grand-cross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-cross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-cross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-cross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-cross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow2 + 100 = \mbox{2-anticross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F + 100 = \mbox{Grand-anticross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-anticross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-anticross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-anticross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-anticross-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{2-hexagram-Hexonacious Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow100 + 100 = \mbox{100-hexagram-Hexonacious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow[F\cdot2] + 100 = \mbox{Hexonaciously-Ridiculously-Great Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Hexonaciously-Ridiculously-Mega-Grand Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-Ridiculously-Crazy Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-Ridiculously-Ridiculous Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-Ridiculously-Ungodful Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + F + 100 = \mbox{Grand-on-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + F\uparrow2 + 100 = \mbox{Mega-Grand-on-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow2 + 100 = \mbox{Crazy-on-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-on-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-on-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-lahz-Ridiculous-on-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot2 + 100 = \mbox{2-exta-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot F + 100 = \mbox{Grand-exta-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow2 + 100 = \mbox{Mega-Grand-exta-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow2 + 100 = \mbox{Crazy-exta-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-exta-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-exta-Hexonaciously-Extreme Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot F\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-lahz-Ridiculous-exta-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow2 + 100 = \mbox{2-force-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow F + 100 = \mbox{Grand-force-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-force-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-force-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-force-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-force-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow F\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-lahz-Ridiculous-force-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow2 + 100 = \mbox{2-cross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F + 100 = \mbox{Grand-cross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-cross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-cross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-cross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-cross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-lahz-Ridiculous-cross-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow2 + 100 = \mbox{2-anticross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow F + 100 = \mbox{Grand-anticross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Mega-Grand-anticross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Crazy-anticross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Ridiculous-anticross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Ungodful-anticross-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-lahz-Ridiculous-anticross-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{2-hexagram-Hexonaciously-Extreme Forcesinhexann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow\uparrow100 + 100 = \mbox{100-hexagram-Hexonaciously-Extreme Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F] + 100 = \mbox{Hexonacious-lahz-Grand-on-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow2] + 100 = \mbox{Hexonacious-lahz-Mega-Grand-on-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow2] + 100 = \mbox{Hexonacious-lahz-Crazy-on-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow\uparrow2] + 100 = \mbox{Hexonacious-lahz-Ridiculous-on-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2 + F\uparrow\uparrow\uparrow\uparrow2] + 100 = \mbox{Hexonacious-lahz-Ungodful-on-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot2] + 100 = \mbox{Hexonacious-lahz-2-exta-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot F] + 100 = \mbox{Hexonacious-lahz-Grand-exta-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot F\uparrow2] + 100 = \mbox{Hexonacious-lahz-Mega-Grand-exta-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot F\uparrow\uparrow2] + 100 = \mbox{Hexonacious-lahz-Crazy-exta-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot F\uparrow\uparrow\uparrow2] + 100 = \mbox{Hexonacious-lahz-Ridiculous-exta-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot F\uparrow\uparrow\uparrow\uparrow2] + 100 = \mbox{Hexonacious-lahz-Ungodful-exta-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow2 + 100 = \mbox{Hexonacious-lahz-2-force-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F + 100 = \mbox{Hexonacious-lahz-Grand-force-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow2 + 100 = \mbox{Hexonacious-lahz-Mega-Grand-force-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Crazy-force-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Ridiculous-force-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Ungodful-force-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-2-cross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F + 100 = \mbox{Hexonacious-lahz-Grand-cross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow2 + 100 = \mbox{Hexonacious-lahz-Mega-Grand-cross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Crazy-cross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Ridiculous-cross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Ungodful-cross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-2-anticross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F + 100 = \mbox{Hexonacious-lahz-Grand-anticross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Hexonacious-lahz-Mega-Grand-anticross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Crazy-anticross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Ridiculous-anticross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-Ungodful-anticross-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonacious-lahz-2-hexagram-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow [F\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow100 + 100 = \mbox{Hexonacious-lahz-100-hexagram-Hexonacious Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow [F\cdot2] + 100 = \mbox{Hexonaciously-Extremely-Great Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow F\uparrow2 + 100 = \mbox{Hexonaciously-Extremely-Mega-Grand Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-Extremely-Crazy Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-Extremely-Ridiculous Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Hexonaciously-Extremely-Ungodful Forcesinhexann}\]

\[ F\uparrow\uparrow\uparrow\uparrow\uparrow4 + 100 = \mbox{Hexonaciously-Atrocious Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow5 + 100 = \mbox{Hexonaciously-Frightful Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow6 + 100 = \mbox{Hexonaciously-Immense Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow7 + 100 = \mbox{Hexonaciously-Terrifying Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow8 + 100 = \mbox{Hexonaciously-Obscene Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow9 + 100 = \mbox{Hexonaciously-Exceptional Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow10 + 100 = \mbox{Hexonaciously-Ludicrous Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow100 + 100 = \mbox{Hexonaciously-Drastic Forcesinhexann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F + 100) + 100 = \mbox{Grand Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + (F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100) + 100 = \mbox{Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + F + 100 = \mbox{Grand-on-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2\cdot2 + 100 = \mbox{2-exta-Heptonacious Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow2 + 100 = \mbox{2-force-Heptonacious Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow2 + 100 = \mbox{2-cross-Heptonacious Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow2 + 100 = \mbox{2-anticross-Heptonacious Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{2-hexagram-Heptonacious Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{2-heptagram-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\cdot2] + 100 = \mbox{Heptonaciously-Ridiculously-Great Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3 + 100 = \mbox{Heptonaciously-Extreme Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3 + F + 100 = \mbox{Grand-on-Heptonaciously-Extreme Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3 + F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Heptonaciously-lahz-Ridiculous-on-Extreme Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3 \cdot2 + 100 = \mbox{2-exta-Heptonatiously-Extreme Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow 2 + 100 = \mbox{2-force-Heptonaciously-Extreme Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow 2 + 100 = \mbox{2-cross-Heptonaciously-Extreme Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow 2 + 100 = \mbox{2-anticross-Heptonaciously-Extreme Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow\uparrow 2 + 100 = \mbox{2-hexagram-Heptonaciously-Extreme Forcesinheptann}\]

\[ [F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow3]\uparrow\uparrow\uparrow\uparrow\uparrow 2 + 100 = \mbox{2-heptagram-Heptonaciously-Extreme Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + F] + 100 = \mbox{Heptonacious-lahz-Grand-on-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 \cdot2] + 100 = \mbox{Heptonacious-lahz-2-exta-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow2 + 100 = \mbox{Heptonacious-lahz-2-force-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow2 + 100 = \mbox{Heptonacious-lahz-2-cross-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow2 + 100 = \mbox{Heptonacious-lahz-2-anticross-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Heptonacious-lahz-2-hexagram-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2]\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Heptonacious-lahz-2-heptagram-Heptonacious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow F\uparrow\uparrow\uparrow\uparrow\uparrow[F\cdot2] + 100 = \mbox{Heptonaciously-Extremely-Great Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow4 + 100 = \mbox{Heptonaciously-Atrocious Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow5 + 100 = \mbox{Heptonaciously-Frightful Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow6 + 100 = \mbox{Heptonaciously-Immense Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow7 + 100 = \mbox{Heptonaciously-Terrifying Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow8 + 100 = \mbox{Heptonaciously-Obscene Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow9 + 100 = \mbox{Heptonaciously-Exceptional Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow10 + 100 = \mbox{Heptonaciously-Ludicrous Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow100 + 100 = \mbox{Heptonaciously-Drastic Forcesinheptann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Forcesinoctann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Forcesinennann}\]

\[F\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow2 + 100 = \mbox{Forcesindekann}\]

Which brings us to our last entry:

\[F \{100\} F + 100 = \mbox{Forcesinkaoss}\]

Well, last well-defined one in any case. This next one is ill-defined because I haven't made rules for putting Fs in Bowers' up-arrow brackets, and I don't really intend to, the next step will be something else entirely... but let's just pretend I have:

\[F \{F\} F + 100 = \mbox{Endrallhyiighsze}\]

And I guess that's all for now ^.^

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.