FANDOM

  • Rpakr

    Since it seems like destruction started, I will write progress of reversion here. Time is UTC.

    All edits by GoogHAL-9000 have been reverted.


    English Wiki, 10221 articles

    Japanese Wiki, 568 articles

    German Wiki, 472 articles

    Dutch Wiki, 279 articles

    Chinese Wiki, 60 articles

    French Wiki, 55 articles

    Russian Wiki, 28 articles

    Czech Wiki, 14 articles


    18:11: Destruction started in the Russian wiki.

    18:23: Destruction stopped in the Russian wiki. GoogHAL-9000 made 29 edits.

    18:26: Destruction started in the Japanese wiki.

    18:33: Me, an admin in the Japanese wiki, blocked GoogHAL-9000. It was able to made 11 edits.

    18:36: GoogHAL-9000 made an alternate account, GoogHAL-9000 I and started destruction.

    18:57: GoogHAL-9000 I made 37 edits and left the Japanese wi…



    Read more >
  • Rpakr

    In this blog post, I explain how the last digit of fish number 1, fish number 2 and fish number 3 can be calculated.


    Definition of fish number 1 is complex, but it is actually just iterated Ackermann function. Let \(A(n)=Ack(n,n)\) in Ackermann function. Fish number is \(A^n(3)\) with some natural number \(n\). \(Ack(m,n)=2\uparrow^{m-2}(n+3)-3\) so \(A(n)=2\uparrow^{n-2}(n+3)-3=(2\uparrow\uparrow a)-3\) for \(n>3\). First we have to find \(2^n mod10\). \(2^1=2\equiv2 mod10\) \(2^2=4\equiv4 mod10\) \(2^3=8\equiv8 mod10\) \(2^4=16\equiv6 mod10\) \(2^5=32\equiv2 mod10 \cdots\)

    \(2^{4k+1}\equiv2 mod10\) \(2^{4k+2}\equiv4 mod10\) \(2^{4k+3}\equiv8 mod10\) \(2^{4k+4}\equiv6 mod10\)

    So \(2^n mod 10\) has a cycle 2,4,8,6,2,4,8,6,2,4,8,6,...

    Then we …


    Read more >
  • Rpakr

    His formulas can be found here .

    PsiCubed2's fractional Psi Levels can be found here .



    n \(\psi(n)\)
    0 0
    0.01 0.1
    0.02 0.2
    0.03 0.3
    0.04 0.4
    0.05 0.5
    0.06 0.6
    0.07 0.7
    0.08 0.8
    0.09 0.9
    0.1 1
    0.11 1.1
    0.12 1.2
    0.13 1.3
    0.14 1.4
    0.15 1.5
    0.16 1.6
    0.17 1.7
    0.18 1.8
    0.19 1.9
    0.2 2
    0.21 2.1
    0.22 2.2
    0.23 2.3
    0.24 2.4
    0.25 2.5
    0.26 2.6
    0.27 2.7
    0.28 2.8
    0.29 2.9
    0.3 3
    0.31 3.1
    0.32 3.2
    0.33 3.3
    0.34 3.4
    0.35 3.5
    0.36 3.6
    0.37 3.7
    0.38 3.8
    0.39 3.9
    0.4 4
    0.41 4.1
    0.42 4.2
    0.43 4.3
    0.44 4.4
    0.45 4.5
    0.46 4.6
    0.47 4.7
    0.48 4.8
    0.49 4.9
    0.5 5
    0.51 5.1
    0.52 5.2
    0.53 5.3
    0.54 5.4
    0.55 5.5
    0.56 5.6
    0.57 5.7
    0.58 5.8
    0.59 5.9
    0.6 6
    0.61 6.1
    0.62 6.2
    0.63 6.3
    0.64 6.4
    0.65 6.5
    0.66 6.6
    0.67 6.7
    0.68 6.8
    0.69 6.9
    0.7 7
    0.71 7.1
    0.72 7.2
    0.73 7.3
    0.74 7.4
    0.75 7.5
    0.76 7.6
    0.77 7.7
    0.78 7.8
    0.79 7.9
    0.8 8
    0.81 8.1
    0.82 8.2
    0.83 8.3
    0.84 8.4
    0.85 8.5
    0…
























































































    Read more >
  • Rpakr

    Name Notation Numbers FGH Level
    1 Guppy regiment E# 504 \(2\)
    2 Grangol regiment 188 \(3\)
    3 Greagol regiment 76 \(4\)
    4 Gigangol regiment 59 \(5\)
    5 Gorgegol regiment 53 \(6\)
    6 Gulgol regiment 48 \(7\)
    7 Gaspgol regiment 46 \(8\)
    8 Ginorgol regiment 43 \(9\)
    9 Gargantuul regiment 47 \(10\)
    10 Googondol regiment 77 \(11\)
    11 Gugold regiment xE# 13 \(\omega\)
    12 Graatagold regiment 13 \(\omega+1\)
    13 Greegold regiment 13 \(\omega+2\)
    14 Grinningold regiment 13 \(\omega+3\)
    15 Golaagold regiment 13 \(\omega+4\)
    16 Gruelohgold regiment 13 \(\omega+5\)
    17 Gaspgold regiment 13 \(\omega+6\)
    18 Ginorgold regiment 13 \(\omega+7\)
    19 Gargantuuld regiment 13 \(\omega+8\)
    20 Googondold regiment 41 \(\omega+9\)
    21 Gugolthra regiment 286 \(\omega\times2\)
    22 Throogol regim…






















    Read more >
  • Rpakr

    Value of 2↑↑5

    August 3, 2017 by Rpakr

    Source: https://apfloat.appspot.com/

    20035299304068464649790723515602557504478254755697514192650169737108940595563114530895061308809333481010382343429072631818229493821188126688695063647615470291650418719163515879663472194429309279820843091048559905701593189596395248633723672030029169695921561087649488892540908059114570376752085002066715637023661263597471448071117748158809141357427209671901518362825606180914588526998261414250301233911082736038437678764490432059603791244909057075603140350761625624760318637931264847037437829549756137709816046144133086921181024859591523801953310302921628001605686701056516467505680387415294638422448452925373614425336143737290883037946012747249584148649159306472520151556939226281806916507963810641322753072671439…

    Read more >