FANDOM


I formed the Great Googology Census 2 after having some philosophical differences with Sbiis Saibian's Great Googology Census. I feel many valuable contributions to googology have been snubbed. Without further ado, here they are.

Googology Certificate -- Alex Thurber

Alex Thurber was a kid I knew in fifth grade who once said "I already told you a borgillion times." This had a huge impact on the googology community, and laid down the foundations for NumbersGuy1999's sequence trorgillion, quadrorgillion, etc. To my knowledge, Alex Thurber is currently in jail.

Googology Certificate -- StarWarsGavin3

StarWarsGavin3 is best known for his pioneering work in creating enormous sprawling tables of fast-growing hierarchy approximations.

\begin{eqnarray*} \{[L,2X]\}_{n,n} & & \Theta(\Theta_1(\Omega)\omega2) \\ \{[L,X^X]\}_{n,n} & & \Theta(\Theta_1(\Omega)\omega^\omega) \\ \{[L,X_2\&X]\}_{n,n} & & \Theta(\Theta_1(\Omega)\theta(\Omega^\omega)) \\ \{[L,L]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta(0)) \\ \{[L,\{L,2\}]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta(1)) \\ \{[L,[L,2]]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta(\Theta_1(\Omega))) \\ \{[L,[L,L]]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta(\Theta_1(\Omega)\Theta(0))) \\ \{[L,X,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega) \\ \{[L,2X,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega2) \\ \{[L,L,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega \Theta(0)) \\ \{[L,X,3]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^2) \\ \{[L,L,L]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Theta(0)}) \\ \{[L,X,1,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^\Omega) \\ \{[L,X,2,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega+1}) \\ \{[L,X,1,3]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega2}) \\ \{[L,X,1,1,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^2}) \\ \{[L,X(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega}) \\ \{[L,[L,X(1)2]+1]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega}+\Theta_1(\Omega)) \\ \{[L,[L,X(1)2]+1,2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega}+\Theta_1(\Omega)\Omega) \\ \{[[L,X(1)2],X(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega}2) \\ \{[L,4,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega}3) \\ \{[L,X,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega}\omega) \\ \{[L,X,2,1,...,1,2]\}_{n,n}\text{ a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega+1}) \\ \{[L,X,3,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega+2}) \\ \{[L,X,L,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega+\Theta(0)}) \\ \{[L,X,1,2,1,...,1,2]\}_{n,n}\text{ a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega+\Omega}) \\ \{[L,X,1,3,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega+\Omega2}) \\ \{[L,X,1,1,2,1,...,1,2]\}_{n,n}\text{ a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega+\Omega^2}) \\ \{[L,X,1,...,1,3]\}_{n,n}\text{ 3 a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega2}) \\ \{[L,X,1,...,1,X]\}_{n,n}\text{ a.p. X+1} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^\omega\omega}) \\ \{[L,X,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+2} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\omega+1}}) \\ \{[L,X,1,...,1,2]\}_{n,n}\text{ 2 a.p. X+3} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\omega+2}}) \\ \{[L,2X(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\omega2}}) \\ \{[L,X^2(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\omega^2}}) \\ \{[L,L(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\Theta(0)}}) \\ \{[L,X,2(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\Omega}}) \\ \{[L,X,2(1)(1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\Omega2}}) \\ \{[L,X,2(2)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\Omega^2}}) \\ \{[L,X,2(0,1)2]\}_{n,n} & & \Theta(\Theta_1(\Omega)\Omega^{\Omega^{\Omega^\Omega}}) \\ \{X_2\uparrow\uparrow X_2[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\varepsilon_{\Omega+1}) \\ \{X_3\&X_2[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\theta_1(\Omega_2^\omega)) \\ \{L[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(0)) \\ \{[L,2][\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)))) \\ \{[L,L][\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Theta(0)))) \\ \{[L,X_3,2][\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Omega))) \\ \{[L,X_3,1,2][\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Omega^\Omega))) \\ \{[L,X_3,2(1)2][\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Omega^{\Omega^\Omega}))) \\ \{X_4\uparrow\uparrow X_4[\&]L[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\varepsilon_{\Omega+1}))) \\ \{L[\&]L[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Theta_1(0)))) \\ \{[L,X_5,2][\&]L[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Omega))))) \\ \{[L,X_7,2][\&]L[\&]L[\&]L\}_{n,n} & & \Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\times \\ & & \Theta_1(\Theta(\Theta_1(\Omega)\Theta_1(\Theta(\Theta_1(\Omega)\Omega))))))) \end{eqnarray*}

Googology Certificate -- Ultraguy4444

Ultraguy4444 hails from the Tomb Raider/Bioshock Crossover Fanon Wiki v2 (forked from the original Tomb Raider/Bioshock Crossover Fanon Wiki following an administrative disagreement) and will forget about googology in two weeks. He starts a Google Site called "Ultraguy's Dumb Large Number Stuff Pages," where he will begin making his own large numbers master list. He will abandon his site after reaching the number ten.

Googology Certificate -- Faraad Fadpal

Faraad Fadpal is known for a website, "Faraad Fadpal's Large Number Website," which, if not one of the most significant contributions to googology, is definitely one of the largest. In his large number website, Faraad Fadpal discusses the numbers of the cosmos, how we may comprehend numbers that transcend the limitations of the Universe itself. Numbers so large our minds cannot comprehend, and with which we must use symbolic and abstract notations. Mathematics is the universal language that unites us all, the blood that flows through our collective veins as abstract thinkers, and googology truly means pushing the limits of this language. When the abstract ether of our universe breaks down, what left is there? How can we -- mortal, concrete beings -- shatter reality itself with only some electrical signals zapping about in our feeble brains? And how can we tap into this vulnerability of the Platonic abstract space, using numbers so large they BLAST OFF INTO INFINITY AT UNIMAGINABLE RATES?!?! This and much more is explored in the first part of the first chapter in his website.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.