FANDOM


This blog post contains the FGH of Hierarchical Nested Subscript Array Notation. I have also added comparisons to HAN and Dollar Function.

Up to \(\vartheta(\Omega_{\Omega})\)

FGH HNSAN HAN Dollar Function

\(\vartheta(\Omega_{\omega})\)

\([1/[2]2]\) \([[_{[1]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[0],1\}}1\}} 1]\)

\(\vartheta(\Omega_{\omega2})\)

\([1/[3]2]\) \([[_{[1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[1],1\}}1\}} 1]\)

\(\vartheta(\Omega_{\omega^2})\)

\([1/[1,2]2]\)

\([[_{[1,1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[[1]],1\}}1\}} 1]\)
\(\vartheta(\Omega_{\omega^{\omega}})\) \([1/[1[2]2]2]\) \([[_{[1,1,1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[[[0]]],1\}}1\}} 1]\)
\(\vartheta(\Omega_{\varepsilon_0})\) \([1/[1[1/2]2]2]\) \([[_{[1,1,1,1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[0]_2,1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Gamma_0})\) \([1/[1[1[1/1\sim2]2]2]\) \([[_{[1(1)2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[0,1],1\}}1\}} 1]\)
\(\vartheta(\Omega_{\vartheta(\Omega_{\varepsilon_0})})\) \([1/[1[1/[1[1/2]2]2]2]2]\) \([[_{[[_{[1,1,1,1,2]}1(1)2]]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{[0 \rightarrow_{\{0\rightarrow_{\{[0]_2,1\}}1\}} 1],1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega})\) \([1/[1/2]2]\)

\([[_{[_21(1)2]}1(1)2]]\)

\([0 \rightarrow_{\{0\rightarrow_{\{\{0\}_2,1\}}1\}} 1]\)

Up to \(\psi_{I}(0)\)

FGH HNSAN HAN Dollars Function
\(\vartheta(\Omega_{\Omega})\) \([1/[1/2]2]\) \([[_{[_21]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{0\}_2,1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega2})\) \([1/[1/3]2]\) \([[_{[_21,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{0\}_2\{0\}_2,1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega3})\) \([1/[1/4]2]\) \([[_{[_21,3]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{0\}_2\{0\}_2\{0\}_2,1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega*\omega})\) \([1/[1/1,2]2]\) \([[_{[_21,[1]]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{0\}_2\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega*\omega^\omega})\) \([1/[1/1[2]2]2]\) \([[_{[_21,[1,1,2]]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{\{0\}_2\}\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega*\vartheta(\Omega_{\Omega})})\) \([1/[1/1[1/[1/2]2]2]2]\) \([[_{[_21,[[_{[_21(1)2]}1(1)2]]]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{\{0\}_2\{0\}_2\}\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega^2})\) \([1/[1/1/2]2]\) \([[_{[_21,1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{\{\{0\}_2\}\}\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega^3})\) \([1/[1/1/1/2]2]\) \([[_{[_21,1,3]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{\{\{0\}_2\{0\}_2\}\}\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega^{\Omega}})\) \([1/[1[1/2\sim2]2]2]\) \([[_{[_21,1,1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{\{\{\{0\}_2\}\}\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\varepsilon_{\Omega+1}})\) \([1/[1[1\sim3]2]2]\) \([[_{[_21,1,1,1,2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{\{\{\{\{0\}_2\}\}\}\},1\}}1\}} 1]\)
\(\vartheta(\Omega_{\varphi(\omega,\Omega+1)})\) \([1/[1[2/_32]2]2]\) \([[_{[_21,1,1,1,2]w/[1]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{\{\{1\}_2,1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega_2})\) \([1/[1[1\sim 1/_32]2]2]\) \([[_{[_31(1)2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{0\rightarrow_{\{0,1\}}1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega_{\omega}})\) \([1/[1/[2]2]2]\) \([[_{[_{[1]}1(1)2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{0\rightarrow_{\{[0],1\}}1\}}1\}} 1]\)
\(\vartheta(\Omega_{\Omega_{\Omega_{\omega}}})\) \([1/[1/[1/[2]2]2]2]\) \([[_{[_{[_{[1]}1(1)2]}1(1)2]}1(1)2]]\) \([0 \rightarrow_{\{0\rightarrow_{\{0\rightarrow_{\{0\rightarrow_{\{[0],1\}}1\}}1\}}1\}} 1]\)

\(\psi_{I}(0)\)

\([1[1/_{1,2}3]2]\)

\([[_{<1,2>}1(1)2]]\)

\([0 \rightarrow_{\{0\}\text{&}1}1]\)

Up to the limit of HNSAN

I'm not sure, but I think it reach the limit of Mahlo, the limit of this ( Deedlit11's blog post ), like my & operator.

FGH HNSAN Dollar Function HAN
\(\psi_I(1)\) \([1[1/_{1,2}4]2]\) \([0 \rightarrow_{\{1\}\text{&}1}1]\) \([[_{<1,3>}1]]\)
\(\psi_I(I)\) \([1[1/_{1,2}1/2]2]\) \([0 \rightarrow_{\{0\}_2\text{&}1}1]\) \([[_{<1,1,2>}1]]\)
\(\psi_I(I*\omega)\) \([1[1/_{1,2}1/1,2]2]\) \([0 \rightarrow_{\{\{0\}_2\}\text{&}1}1]\) \([[_{<1,1,[1]>}1]]\)
\(\psi_I(I^2)\) \([1[1/_{1,2}1/1/2]2]\) \([0 \rightarrow_{\{\{\{0\}_2\}\}\text{&}1}1]\) \([[_{<1,1,1,2>}1]]\)
\(\psi_I(I^I)\) \([1[1/_{1,2}1/1/1/2]2]\) \([0 \rightarrow_{\{\{\{\{0\}_2\}\}\}\text{&}1}1]\) \([[_{<1,1,1,1,2>}1]]\)
\(\psi_I(\varepsilon_{I+1})\) \([1[1/_{1,2}1[2\sim2]2]2]\) \([0 \rightarrow_{\{0\}_3\text{&}1}1]\) \([[_{<1,1,1,1,1,2>}1]]\)
\(\psi_I(\zeta_{I+1})\)

\([1[1/_{1,2}1[1\sim1\sim2]2]2]\)

\([0 \rightarrow_{\{0\}_4\text{&}1}1]\) \([[_{<1,1,1,1,1,1,2>}1]]\)
\(\psi_I(\Gamma_{I+1})\) \([1[1/_{1,2}1[1[1\sim1/_32]2]2]2]\) \([0 \rightarrow_{\{0,1\}\text{&}1}1]\) \([[_{<1(1)2>}1]]\)
\(\psi_{I_2}(0)\) \([1[1/_{1,2}1/_{1,2}2]2]\) \([0 \rightarrow_{\{0\}\text{&}2}1]\) \([[_{<_21(1)2>}1]]\)
\(\psi_{I(1)}(0)\) \([1[1[1/_{1,3}2]2]2]\) \([0 \rightarrow_{\{0\}\text{&}_21}1]\)

\([[_{<1(1)2>⁅2⁆}1]]\)

\(\psi_{I(2)}(0)\) \([1[1[1[1/_{1,4}3]2]2]2]\) \([0 \rightarrow_{\{0\}\text{&}_31}1]\) \([[_{<1(1)2>⁅3⁆}1]]\)
\(\psi_{I(1,0)}(0)\) \([1[1/_{1,1,2}3]2]\) \([0 \rightarrow_{\{0\}\text{&}_{\{0\}_2}1}1]\) \([[_{<1(1)2>⁅1,2⁆}1]]\)
\(\psi_{I(2,0)}(0)\) \([1[1[1/_{1,1,3}3]2]2]\) \([0 \rightarrow_{\{0\}\text{&}_{\{0\}_3}1}1]\) \([[_{<1(1)2>⁅1,3⁆}1]]\)
\(\chi(\varepsilon_{M+1})\) \([1[1/_{1[1/2]2}3]2]\) \([0 \rightarrow_{\{0\}\text{&}_{\{0\rightarrow_21\}}1}1]\)

\(\chi(\Gamma_{M+1})\)

\([1[1/_{1[1[1\sim2]2]2}3]2]\) \([0 \rightarrow_{\{0\}\text{&}_{\{0\rightarrow_{0,1}1\}}1}1]\)
\(\chi(M_2)\)

\([1[1/_{1[1[1/_{1,1,1,2}3]2]2}2]2]\)

\([0 \rightarrow_{\{0\}\text{&}_{\{0\}\text{&}_{\{0,1\}}1}1}1]\)
\(\chi(M_{M_2})\) \([1[1/_{1[1[1/_{1[1[1/_{1,1,1,2}3]2]2}2]2]2}2]2]\) \([0 \rightarrow_{\{0\}\text{&}_{\{0\}\text{&}_{\{0\}\text{&}_{\{0,1\}}1}1}1}1]\)
limit of normal Mahlo the variant of S(n) based on HNSAN \([0 \rightarrow_{\{0\}\text{|}0\text{|}1} 1]\)

Extension of HNSAN

Extension of Googleaarex to HNSAN. I hope Bird will define this soon.

FGH HNSAN Dollar Function
\(\psi_{M(3)}(0)\) \([1[1/_{1/2}3]2]\) \([0 \rightarrow_{\{0\}\text{|}1\text{|}1} 1]\)
\(\psi_{M(4)}(0)\) \([1[1/_{1/2}4]2]\) \([0 \rightarrow_{\{0\}\text{|}2\text{|}1} 1]\)
\(\psi_{M(1,0)}(0)\) \([1[1/_{1/2}1/2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0\}_2\text{|}1} 1]\)
\(\psi_{\Xi(3,0)}(2,\Xi(3,0)^\omega)\) \([1[1/_{1/2}1[1/1,2 \sim 2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0,0,\{0,0,1\}_{\{0\}}\}\text{|}1} 1]\)
\(\psi_{\Xi(3,0)}(3,0)\) \([1[1/_{1/2}1/_{1/2}2]2]\)

\([0 \rightarrow_{\{0\}\text{|}0,1\text{|}1} 1]\)

\(\psi_{\Xi(4,0)}(0)\) \([1[1[1/_{1/3}2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}2\text{|}_21} 1]\)
\(\psi_{\Xi(\omega,0)}(0)\) \([1[1[1/_{1/1,2}2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0\}\text{|}_21} 1]\)
\(\psi_{\Xi(1,0,0)}(0)\) \([1[1[1/_{1/1/2}2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0\}_2\text{|}_21} 1]\)
\(\psi_{\Xi(\varepsilon_{K+1})}(0)\) \([1[1[1/_{1\sim1\sim...1\sim1\sim 2}2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0\rightarrow1\}\text{|}_21} 1]\)
\(\psi_{\Xi(K_2)}(0)\) \([1[1[1/_{1/_{1/2}2}2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0\}\text{|}_31} 1]\)
\(\psi_{\Xi(K_{K_2})}(0)\) \([1[1[1/_{1/_{1/_{1/2}2}2}2]2]2]\) \([0 \rightarrow_{\{0\}\text{|}\{0\}\text{|}_{\{0\}\text{|}\{0\}\text{|}1}1} 1]\)
limit of compact ordinal limit of xHNSAN

current treasure function, limit of Dollar Function for now

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.