FANDOM


The & operator works as in Ikosarakts definition

The first difference is in the legions.

\(\{X,X/1/1.../1/1/n/\#\}\text{&}k\) = \(\{X,X/1/1.../1/\{X,X/1/1.../1/\{...\}\text{&}X/n-1/\#\}\text{&}X/n-1/\#\}\text{&}k\)

BEAF FGH
\(\{X,X/3\}\text{&}n\) \(\vartheta(\Omega^\Omega2)\)
\(\{X,X/4\}\text{&}n\) \(\vartheta(\Omega^\Omega3)\)
\(\{X,X/1,2\}\text{&}n\) \(\vartheta(\Omega^{\Omega+1})\)
\(\{X,X/1,1,2\}\text{&}n\) \(\vartheta(\Omega^{\Omega+2})\)
\(\{X,X/1(1)2\}\text{&}n\) \(\vartheta(\Omega^{\Omega+\omega})\)
\(\{X,X/1(0,1)2\}\text{&}n\) \(\vartheta(\Omega^{\Omega+\omega^\omega})\)
\(\{X,X/X\uparrow\uparrow X\}\text{&}n\) \(\vartheta(\Omega^{\Omega+\varepsilon_0})\)
\(\{X,X/1/2\}\text{&}n\) \(\vartheta(\Omega^{\Omega2})\)
\(\{X,X/1/3\}\text{&}n\) \(\vartheta(\Omega^{\Omega3})\)
\(\{X,X/1/1,2\}\text{&}n\) \(\vartheta(\Omega^{\Omega^2})\)
\(\{X,X/1/1(1)2\}\text{&}n\) \(\vartheta(\Omega^{\Omega^\omega})\)
\(\{X,X/1/1/2\}\text{&}n\) \(\vartheta(\Omega^{\Omega^\Omega})\)
\(\{X,X/1/1/1/2\}\text{&}n\)

\(\vartheta(\Omega^{\Omega^{\Omega^\Omega}})\)

\(\{X,X(/1)2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega+1})\)
\(\{X,X(/2)2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega+2})\)
\(\{X,X(/0,1)2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega+\omega})\)
\(X\uparrow\uparrow X\text{&&}n\) \(\vartheta(\varepsilon_{\Omega+\varepsilon_0})\)
\(\{X,X//2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega2})\)
\(\{X,X//3\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega3})\)
\(\{X,X//1,2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega^2})\)
\(\{X,X//1(1)2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega^\omega})\)
\(\{X,X//1(0,1)2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega^{\omega^\omega}})\)

\(\{X,X//1/2\}\text{&}n\)

\(\vartheta(\varepsilon_{\Omega^\Omega})\)
\(\{X,X//1/1/2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega^{\Omega^\Omega}})\)
\(\{X,X//1//2\}\text{&}n\) \(\vartheta(\varepsilon_{\varepsilon_{\Omega+1}+1})\)
\(\{X,X//1//1//2\}\text{&}n\) \(\vartheta(\varepsilon_{\varepsilon_{\varepsilon_{\Omega+1}+1}+1})\)
\(\{X,X(//1)2\}\text{&}n\) \(\vartheta(\zeta_{\Omega+1})\)
\(\{X,X(//2)2\}\text{&}n\) \(\vartheta(\zeta_{\Omega+2})\)
\(\{X,X///2\}\text{&}n\) \(\vartheta(\zeta_{\Omega2})\)

\(\{L,X\}_{n,n}\)

\(\vartheta(\varphi(\omega,\Omega2))\)

L arrays

The second difference is that the L in the arrays, exepted for the first one, will work like \(\Omega\)

BEAF FGH
\(\{L,L\}_{n,n}\) \(\vartheta(\varphi(\Omega,1))\)
\(\{L,L*2\}_{n,n}\) \(\vartheta(\varphi(\Omega2,1))\)
\(\{L,L^2\}_{n,n}\) \(\vartheta(\varphi(\Omega^2,1))\)
\(\{L,3,2\}_{n,n}\) \(\vartheta(\varphi(\Omega^\Omega,1))\)
\(\{L,X,2\}_{n,n}\) \(\vartheta(\varphi(\varepsilon_{\Omega+1},1))\)
\(\{L,L,2\}_{n,n}\) \(\vartheta(\varphi(\varepsilon_{\Omega2},1))\)
\(\{L,L,3\}_{n,n}\) \(\vartheta(\varphi(\zeta_{\Omega2},1))\)
\(\{L,L,L\}_{n,n}\) \(\vartheta(\varphi(\varphi(\Omega,1),1))\)
\(\{L,L,1,2\}_{n,n}\) \(\vartheta(\Omega_2)\)

\(\{L,L(1)2\}_{n,n}\)

\(\vartheta(\Omega_2^\omega)\)

Lugions

BEAF FGH
\(\{X,X\setminus2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2})\)
\(\{X,X\setminus3\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}2)\)
\(\{X,X\setminus1,2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}\Omega)\)
\(\{X,X\setminus1(1)2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}\Omega^\omega)\)
\(\{X,X\setminus1/2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}\Omega^\Omega)\)
\(\{X,X\setminus1/1/2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}\Omega^{\Omega^\Omega})\)
\(\{X,X\setminus1(/1)2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}\varepsilon_{\Omega+1})\)
\(\{X,X \setminus 1 // 2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2}\varepsilon_{\Omega2})\)
\(\{X,X\setminus1\setminus2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2+1})\)
\(\{X,X\setminus1\setminus3\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2+2})\)
\(\{X,X\setminus1\setminus1,2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2+\Omega})\)
\(\{X,X\setminus1\setminus1\setminus2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_22})\)
\(\{X,X\setminus1\setminus1\setminus1\setminus2\}\text{&}n\) \(\vartheta(\Omega_2^{\Omega_2^2})\)
\(\{X,X(\setminus1)2\}\text{&}n\) \(\vartheta(\varepsilon_{\Omega_2+1})\)

L2 arrays works a bit like \(\Omega_2\), L3 arrays works a bit like \(\Omega_3\), etc.

Beyond!

BEAF FGH
\(\{L2,L2,1,2\}_{n,n}\) \(\vartheta(\Omega_3)\)
\(\{L3,L3,1,2\}_{n,n}\) \(\vartheta(\Omega_4)\)
\(\{LX\}_{n,n}\) \(\vartheta(\Omega_\omega)\)
\(\{[L,L]\}_{n,n}\) \(\vartheta(\Omega_\Omega)\)
\(\{[L,L,L]\}_{n,n}\) \(\vartheta(\Omega_{\Omega_\Omega})\)
\(\{[L,X(1)2]\}_{n,n}\) \(\psi(\psi_I(0))\)
\(\{[L,L(1)2]\}_{n,n}\) \(\psi(\psi_I(I))\)
\(\{[L,L,2(1)2]\}_{n,n}\) \(\psi(\psi_I(\varepsilon_{I+1}))\)
\(\{[L,L,L(1)2]\}_{n,n}\) \(\psi(\psi_{I_2}(0))\)
\(\{[L,L,L,L(1)2]\}_{n,n}\) \(\psi(\psi_{I_I}(0))\)
\(\{[L,X(1)3]\}_{n,n}\) \(\psi(\psi_{I(1)}(0))\)
\(\{[L,X(1)4]\}_{n,n}\) \(\psi(\psi_{I(2)}(0))\)
\(\{[L,L(1)L]\}_{n,n}\) \(\psi(\psi_{I(1,0)}(0))\)

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.