## FANDOM

10,407 Pages

The vecillion is equal to $$10^{3\left(10^{30}\right)+3}$$, or $$10^{3\text{ nonillion }3}$$.[1][2] The term was coined by Jonathan Bowers. It is 3,000,000,000,000,000,000,000,000,000,004 digits long.

Vecillion is also known as one milliamilliamilliamilliamilliamilliamilliamilliamilliamilliatillion according to Landon Curt Noll's The English name of a number.

### Etymology

The name of this number is based on the suffix "-illion" and the prefix "veco-".

### Approximations in other notations

Notation Lower bound Upper bound
Arrow notation $$1000\uparrow(1+10\uparrow30)$$
Down-arrow notation $$1000\downarrow\downarrow11$$ $$321\downarrow\downarrow13$$
Steinhaus-Moser Notation 21[3][3] 22[3][3]
Copy notation 2[2[31]] 3[3[31]]
H* function H(H(9))
Taro's multivariable Ackermann function A(3,A(3,99)) A(3,A(3,100))
Pound-Star Notation #*((1))*(0,4)*8 #*((1))*(4,2,9)*4
BEAF {1000,1+{10,30}}
Hyper-E notation E(3+3E30)
Bashicu matrix system (0)(1)[99] (0)(1)[100]
Hyperfactorial array notation (27!)! (28!)!
Fast-growing hierarchy $$f_2(f_2(96))$$ $$f_2(f_2(97))$$
Hardy hierarchy $$H_{\omega^22}(96)$$ $$H_{\omega^22}(97)$$
Slow-growing hierarchy $$g_{\omega^{\omega^{\omega3}3+3}}(10)$$